Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100402    DOI: 10.1088/0256-307X/40/10/100402
GENERAL |
Free Energy, Stability, and Particle Source in Dynamical Holography
Yu Tian1,2*, Xiao-Ning Wu3,4, and Hongbao Zhang5
1School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China
4Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, China
5Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Yu Tian, Xiao-Ning Wu, and Hongbao Zhang 2023 Chin. Phys. Lett. 40 100402
Download: PDF(848KB)   PDF(mobile)(865KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems, using the conserved currents in the bulk spacetime. In particular, in the probe limit a generalized free energy is defined with the property of monotonic decreasing in dynamic processes. It is then shown that the (absolute) thermodynamical stability implies the dynamical stability, while the linear dynamical stability implies the thermodynamical (meta-)stability. The holographic superfluid is taken as an example to illustrate our general formalism, where the dynamic evolution of the system in contact with a particle source is clarified by theoretical investigation and numerical verification. The case going beyond the probe limit is also discussed.
Received: 30 July 2023      Published: 28 September 2023
PACS:  04.60.Cf (Gravitational aspects of string theory)  
  11.25.Tq (Gauge/string duality)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Tian
Xiao-Ning Wu
and Hongbao Zhang
[1] Liu H and Sonner J 2018 arXiv:1810.02367 [hep-th]
[2] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[3] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[4] Gubser S S, Klebanov I R, and Polyakov A M 1998 Phys. Lett. B 428 105
[5] Son D T and Starinets A O 2002 J. High Energy Phys. 2002(09) 042
[6] Gubser S S and Mitra I 2000 arXiv:hep-th/0009126
[7] Gubser S S and Mitra I 2001 J. High Energy Phys. 2001(08) 018 [hep-th/0011127]
[8] Iyer V and Wald R 1994 Phys. Rev. D 50 846
[9]Reichl R E 1980 A Modern Course in Statistical Physics (Austin, TX: University of Texas Press)
[10] Li W J, Tian Y, and Zhang H 2013 J. High Energy Phys. 2013(07) 030
[11] Chesler P M, Liu H, and Adams A 2013 Science 341 368
[12] Tian Y, Wu X, and Zhang H 2013 Class. Quantum Grav. 30 125010
[13] Tian Y, Wu X, and Zhang H 2014 J. High Energy Phys. 2014(10) 170
[14] Hartnoll S A, Herzog C P, and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
[15] Lan S, Tian Y, and Zhang H B 2016 arXiv:1605.01193 [hep-th]
[16] Du Y, Niu C, Tian Y, and Zhang H B 2014 arXiv:1412.8417 [hep-th]
[17] Li X, Tian Y, and Zhang H B 2019 arXiv:1904.05497 [hep-th]
[18] Du Y Q, Lan S Q, Tian Y, and Zhang H B 2015 arXiv:1511.07179 [hep-th]
[19] Hartnoll S A, Herzog C P, and Horowitz G T 2008 J. High Energy Phys. 2008(12) 015
[20] Chesler P M and Yaffe J G 2013 arXiv:1309.1439 [hep-th]
[21] Ning Z, Chen Q, Tian Y, Wu X N, and Zhang H B 2023 arXiv:2307.14156 [gr-qc]
[22] Hollands S and Wald R 2013 Commun. Math. Phys. 321 629
Related articles from Frontiers Journals
[1] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 100402
Viewed
Full text


Abstract