Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 096201    DOI: 10.1088/0256-307X/39/9/096201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$
Caizi Zhang1, Fangfei Li1, Xinmiao Wei1, Mengqi Guo1, Yingzhan Wei1, Liang Li1, Xinyang Li1*, and Qiang Zhou1,2
1State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
2Synergetic Extreme Condition User Facility, Jilin University, Changchun 130012, China
Cite this article:   
Caizi Zhang, Fangfei Li, Xinmiao Wei et al  2022 Chin. Phys. Lett. 39 096201
Download: PDF(2604KB)   PDF(mobile)(2597KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Strontium titanate (SrTiO$_{3}$) is a typical perovskite-type ceramic oxide and studying its high-pressure phases are critical to understand the ferroelastic phase transition. SrTiO$_{3}$ also can be used as an important analog of davemaoite (CaSiO$_{3}$) to understand the compositional and velocity structure of the Earth's interior. However, the high-pressure studies on the cubic-to-tetragonal phase transition pressure and elastic properties remain unclear for SrTiO$_{3}$. Here, we investigate the phase transition and elasticity of single-crystal SrTiO$_{3}$ by Raman and Brillouin scattering combined with diamond anvil cell. The acoustic velocities of single-crystal SrTiO$_{3}$ and the independent elastic constants of cubic and tetragonal SrTiO$_{3}$ are determined up to 27.5 GPa at room temperature. This study indicates that $C_{11}$, $C_{12}$, and $C_{44}$ exhibit abnormal changes at 10.3 GPa, which is related to the cubic-to-tetragonal phase transition. Interestingly, a significant softening on shear modulus and a large anisotropy of shear wave splitting ($A_{\mathrm{S}}^{\mathrm{PO}}$) jump are observed at 10.3 GPa. Using obtained elastic constants, the coefficients of the Landau potential are calculated to understand the phase transition between cubic and tetragonal. The calculated coefficients of the Landau potential are, $\lambda_{2} = 3.12\times 10^{-2}$ GPa, $\lambda_{4} = -2.02 \times 10^{-2}$ GPa, $B^* = 1.34 \times 10^{-4}$ GPa and $B = 1.66\times 10^{-4}$ GPa. The elastic results have profound implications in understanding the structure of the Earth's interior and indicate that the presence of tetragonal Ti-bearing CaSiO$_{3}$ helps to explain the large $A_{\mathrm{S}}^{\mathrm{PO}}$ of the Earth's mid-mantle.
Received: 25 June 2022      Editors' Suggestion Published: 12 August 2022
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  62.65.+k (Acoustical properties of solids)  
  64.60.-i (General studies of phase transitions)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/096201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/096201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Caizi Zhang
Fangfei Li
Xinmiao Wei
Mengqi Guo
Yingzhan Wei
Liang Li
Xinyang Li
and Qiang Zhou
[1] Frederikse H, Thurber W, and Hosler W 1964 Phys. Rev. 134 A442
[2] Itoh M, Wang R, Inaguma Y, Yamaguchi T, Shan Y, and Nakamura T 1999 Phys. Rev. Lett. 82 3540
[3] Koonce C, Cohen M L, Schooley J, Hosler W, and Pfeiffer E 1967 Phys. Rev. 163 380
[4] Burke W and Pressley R 1971 Solid State Commun. 9 191
[5] Balachandran U and Eror N 1981 J. Solid State Chem. 39 351
[6] Bednorz J and Müller K 1984 Phys. Rev. Lett. 52 2289
[7] Kim K H, Jun J H, and Choi J S 1985 J. Phys. Chem. Solids 46 1173
[8] Wang Y Q, Liu Y, Zhang M X, and Min F F 2018 Chin. Phys. Lett. 35 017101
[9] Carpenter M A 2007 Am. Mineral. 92 309
[10] Fischer G J, Wang Z C, and Karato S I 1993 Phys. Chem. Miner. 20 97
[11] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D, Pamato M, Alvaro M, Peruzzo L, Gurney J, and Moore A 2018 Nature 555 237
[12] Tschauner O, Huang S, Yang S, Humayun M, Liu W, Gilbert C S N, Bechtel H A, Tischler J, and Rossman G R 2021 Science 374 891
[13] Sun N, Bian H, Zhang Y, Lin J F, Prakapenka V B, and Mao Z 2022 Am. Mineral. 107 110
[14] Thomson A R, Crichton W A, Brodholt J P, Wood I G, Siersch N C, Muir J M R, Dobson D P, and Hunt S A 2019 Nature 572 643
[15] Komabayashi T, Hirose K, Sata N, Ohishi Y, and Dubrovinsky L S 2007 Earth Planet. Sci. Lett. 260 564
[16] Sun N, Mao Z, Yan S, Wu X, Prakapenka V B, and Lin J F 2016 J. Geophys. Res.: Solid Earth 121 4876
[17] Ishii T, Miyajima N, Criniti G, Hu Q, Glazyrin K, and Katsura T 2022 Earth Planet. Sci. Lett. 584 117472
[18] Grzechnik A, Wolf G H, and McMillan P F 1997 J. Raman Spectrosc. 28 885
[19] Müller K A and Berlinger W 1971 Phys. Rev. Lett. 26 13
[20] Bonello B, Fischer M, and Polian A 1989 J. Acoust. Soc. Am. 86 2257
[21] Guennou M, Bouvier P, Kreisel J, and Machon D 2010 Phys. Rev. B 81 054115
[22] Ishidate T and Isonuma T 1992 Ferroelectrics 137 45
[23] Ishidate T, Sasaki S, and Inoue K 1988 High Press. Res. 1 53
[24] Lheureux D, Polian A, Fischer M, Gauthier M, and Itié J 2000 IEEE Ultrason. Symp. 1 557
[25] Hachemi A, Hachemi H, Ferhat-Hamida A, and Louail L 2010 Phys. Scr. 82 025602
[26] Lytle F W 1964 J. Appl. Phys. 35 2212
[27] Samara G and Giardini A 1965 Phys. Rev. 140 A954
[28] Yen J and Nicol M 1992 J. Appl. Phys. 72 5535
[29] Wang J, Zhou Q, Guo S, Huang Y, Huang X, Wang L, Li F, and Cui T 2020 Chin. Phys. Lett. 37 066201
[30] Whitfield C H, Brody E M, and Bassett W A 1976 Rev. Sci. Instrum. 47 942
[31] Every A 1980 Phys. Rev. B 22 1746
[32] Bell R and Rupprecht G 1963 Phys. Rev. 129 90
[33] Birch F 1978 J. Geophys. Res.: Solid Earth 83 1257
[34] Klotz S, Chervin J, Munsch P, and Le M G 2009 J. Phys. D 42 075413
[35]Schreiber E, Anderson O L, and Soga N 1973 Elastic Constants and their Measurements (New York: McGraw-Hill) p 196
[36] Itié J P, Couzinet B, Dhaussy A C, Flank A M, Jaouen N, Lagarde P, and Polian A 2006 High Press. Res. 26 325
[37]Dennison J R, Holtz M, and Swain G 1996 Spectroscopy 11 38
[38] Nelson D G and Williamson B E 1982 Aust. J. Chem. 35 715
[39] Wang X, Kunc K, Loa I, Schwarz U, and Syassen K 2006 Phys. Rev. B 74 134305
[40] Zhu S C, Chen G W, Zhang D, Xu L, Liu Z P, Mao H K, and Hu Q 2022 J. Am. Chem. Soc. 144 7414
[41] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, and Meng J 2007 Phys. Rev. B 76 054115
[42] Jiang F, Gwanmesia G D, Dyuzheva T I, and Duffy T S 2009 Phys. Earth Planet. Inter. 172 235
[43] Zhang J, Li B, and Zhao Y 2008 High Press. Res. 28 415
[44] Decremps F, Zhang J, Li B, and Liebermann R C 2001 Phys. Rev. B 63 224105
[45] Glazer A M 1972 Acta Crystallogr. B 28 3384
[46] Buchen J, Marquardt H, Schulze K, Speziale S, Boffa B T, Nishiyama N, and Hanfland M 2018 J. Geophys. Res.: Solid Earth 123 7347
[47] Carpenter M A 2006 Am. Mineral. 91 229
[48] Carpenter M A, Hemley R J, and Mao H K 2000 J. Geophys. Res.: Solid Earth 105 10807
[49] Hemley R J, Shu J, Carpenter M, Hu J, Mao H, and Kingma K 2000 Solid State Commun. 114 527
[50] Zhang Y, Fu S, Wang B, and Lin J F 2021 Phys. Rev. Lett. 126 025701
[51] Salje E, Wruck B, and Thomas H 1991 Z. Phys. B 82 399
[52] Ritsema J, Deuss A, van Heijst H J, and Woodhouse J H 2011 Geophys. J. Int. 184 1223
[53] Waszek L, Schmerr N C, and Ballmer M D 2018 Nat. Commun. 9 385
[54] Kawai K and Tsuchiya T 2015 Geophys. Res. Lett. 42 2718
[55] Li L, Weidner D J, Brodholt J, Alfè D, David P G, Caracas R, and Wentzcovitch R 2006 Phys. Earth Planet. Inter. 155 249
[56] Stixrude L and Lithgow-Bertelloni C 2011 Geophys. J. Int. 184 1180
[57] Sinelnikov Y D, Chen G, and Liebermann R C 1998 Phys. Chem. Miner. 25 515
[58] Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y, and Hirao N 2012 Earth Planet. Sci. Lett. 349 1
[59] Gréaux S, Irifune T, Higo Y, Tange Y, Arimoto T, Liu Z, and Yamada A 2019 Nature 565 218
[60] Li B, Kung J, and Liebermann R C 2004 Phys. Earth Planet. Inter. 143 559
[61] Immoor J, Miyagi L, Liermann H P, Speziale S, Schulze K, Buchen J, Kurnosov A, and Marquardt H 2022 Nature 603 276
[62] van der Hilst R D and Kárason H 1999 Science 283 1885
[63] Shahnas M H, Yuen D A, and Pysklywec R N 2017 Earth Planet. Sci. Lett. 458 293
[64] Zhuang Y, Gan B, Cui Z, Tang R, Tao R, Hou M, Jiang G, Popescu C, Garbarino G, Zhang Y, and Hu Q 2022 Sci. Bull. 67 748
[65] French S and Romanowicz B A 2014 Geophys. J. Int. 199 1303
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 096201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 096201
[3] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 096201
[4] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 096201
[5] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 096201
[6] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 096201
[7] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 096201
[8] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 096201
[9] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 096201
[10] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 096201
[11] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 096201
[12] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 096201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 096201
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 096201
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 096201
Viewed
Full text


Abstract