Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 077102    DOI: 10.1088/0256-307X/39/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr
Sheng Wang1†, Zia ur Rehman2†, Zhanfeng Liu1, Tongrui Li1, Yuliang Li1, Yunbo Wu1, Hongen Zhu1, Shengtao Cui1, Yi Liu1, Guobin Zhang1, Li Song1*, and Zhe Sun1*
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
2Nanoscale Synthesis & Research Laboratory, Department of Applied Physics, University of Karachi, Karachi-75270, Pakistan
Cite this article:   
Sheng Wang, Zia ur Rehman, Zhanfeng Liu et al  2022 Chin. Phys. Lett. 39 077102
Download: PDF(1804KB)   PDF(mobile)(1897KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tuning the bandgap in layered transition metal dichalcogenides (TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti$_{x}$Zr$_{1-x}$Se$_{2}$ single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe$_{2}$ induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti$_{x}$Zr$_{1-x}$Se$_{2}$ decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se $4p$ orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals.
Received: 13 April 2022      Published: 27 June 2022
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/077102       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng Wang
Zia ur Rehman
Zhanfeng Liu
Tongrui Li
Yuliang Li
Yunbo Wu
Hongen Zhu
Shengtao Cui
Yi Liu
Guobin Zhang
Li Song
and Zhe Sun
[1] Späh R et al. 1983 Appl. Phys. Lett. 43 79
[2] Podzorov V et al. 2004 Appl. Phys. Lett. 84 3301
[3] Gan W et al. 2017 ACS Nano 11 1371
[4] Koenig S P et al. 2016 Nano Lett. 16 2145
[5] Lee P A et al. 1969 J. Phys. Chem. Solids 30 2719
[6] Britnell L et al. 2013 Science 340 1311
[7] Song J G et al. 2015 Nat. Commun. 6 7817
[8] Feng Q et al. 2014 Adv. Mater. 26 2648
[9] Zhang M et al. 2014 ACS Nano 8 7130
[10] Wang G et al. 2015 Nat. Commun. 6 10110
[11] Gong Y J et al. 2014 Nano Lett. 14 442
[12] Dou K Y et al. 2020 Appl. Phys. Lett. 117 172405
[13] Wilson J A et al. 1975 Adv. Phys. 24 117
[14] Wang Q et al. 2015 Small 11 5388
[15] Perumal P et al. 2016 Adv. Funct. Mater. 26 3630
[16] Pan T S et al. 2013 Appl. Phys. Lett. 103 093108
[17] Makino Y et al. 2001 Appl. Phys. Lett. 78 1237
[18] Wasim S M et al. 2000 Appl. Phys. Lett. 77 94
[19] Lv Y Y et al. 2017 Sci. Rep. 7 44587
[20] Moustafa M et al. 2016 Appl. Surf. Sci. 366 397
[21] Rehman Z et al. 2019 Appl. Phys. Lett. 115 213102
[22] Li G et al. 2007 Phys. Rev. Lett. 99 027404
[23] Cheng C et al. 2018 Sci. Bull. 63 85
[24] Tsipas P et al. 2015 Microelectron. Eng. 147 269
[25] Gao X Y et al. 2021 Thin Solid Films 732 138790
[26] Yan P et al. 2019 RSC Adv. 9 12394
[27] Gao Y H et al. 2018 Comput. Mater. Sci. 146 36
[28] Bianco R et al. 2015 Phys. Rev. B 92 094107
[29] Wegner A et al. 2020 Phys. Rev. B 101 195145
[30] Chen P et al. 2016 Nano Lett. 16 6331
[31] Chaves A et al. 2020 npj 2D Mater. Appl. 4 29
[32] Tongay S et al. 2014 Appl. Phys. Lett. 104 012101
[33] Kar I et al. 2020 Phys. Rev. B 101 165122
[34] Muhammad Z et al. 2020 ACS Nano 14 835
[35] Moustafa M et al. 2009 Phys. Rev. B 80 035206
[36] Moustafa M et al. 2013 J. Electron Spectrosc. Relat. Phenom. 189 35
[37] Zhang Y et al. 2016 Nano Lett. 16 2485
[38] Zhang Y et al. 2014 Nat. Nanotechnol. 9 111
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077102
[2] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 077102
[3] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 077102
[4] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 077102
[5] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 077102
[6] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 077102
[7] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[8] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[9] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[10] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077102
[11] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 077102
[12] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 077102
[13] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 077102
[14] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077102
[15] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 077102
Viewed
Full text


Abstract