CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density |
Lulu Liu1,2, Shoutao Zhang3*, and Haijun Zhang1,2* |
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 3Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
|
|
Cite this article: |
Lulu Liu, Shoutao Zhang, and Haijun Zhang 2022 Chin. Phys. Lett. 39 056102 |
|
|
Abstract Neon (Ne) can reveal the evolution of planets, and nitrogen (N) is the most abundant element in the Earth's atmosphere. Considering the inertness of neon, whether nitrogen and neon can react has aroused great interest in condensed matter physics and space science. Here, we identify three new Ne–N compounds (i.e., NeN$_6$, NeN$_{10}$, and NeN$_{22}$) under pressure by first-principles calculations. We find that inserting Ne into N$_2$ substantially decreases the polymeric pressure of the nitrogen and promotes the formation of abundant polynitrogen structures. Especially, NeN$_{22}$ acquires a duplex host-guest structure, in which guest atoms (Ne and N$_2$ dimers) are trapped inside the crystalline host N$_{20}$ cages. Importantly, both NeN$_{10}$ and NeN$_{22}$ not only are dynamically and mechanically stable but also have a high thermal stability up to 500 K under ambient pressure. Moreover, ultra-high energy densities are obtained in NeN$_{10}$ (11.1 kJ/g), NeN$_{22}$ (11.5 kJ/g), tetragonal t-N$_{22}$ (11.6 kJ/g), and t-N$_{20}$ (12.0 kJ/g) produced from NeN$_{22}$, which are more than twice the value of trinitrotoluene (TNT). Meanwhile, their explosive performance is superior to that of TNT. Therefore, NeN$_{10}$, NeN$_{22}$, t-N$_{22}$, and t-N$_{20}$ are promising green high-energy-density materials. This work promotes the study of neon-nitrogen compounds with superior properties and potential applications.
|
|
Received: 23 March 2022
Express Letter
Published: 23 April 2022
|
|
PACS: |
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
61.50.Nw
|
(Crystal stoichiometry)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
|
|
|
[1] | Guillot T 2005 Annu. Rev. Earth Planet. Sci. 33 493 |
[2] | Vogt M, Trieloff M, Ott U, Hopp J, and Schwarz W H 2021 Commun. Earth Environ. 2 1 |
[3] | Dong X, Oganov A R, Goncharov A F et al. 2017 Nat. Chem. 9 440 |
[4] | Monserrat B, Martinez-Canales M, Needs R J, and Pickard C J 2018 Phys. Rev. Lett. 121 015301 |
[5] | Zhang J, Lv J, Li H, Feng X, Lu C, Redfern S A, Liu H, Chen C, and Ma Y 2018 Phys. Rev. Lett. 121 255703 |
[6] | Gao H, Sun J, Pickard C J, and Needs R J 2019 Phys. Rev. Mater. 3 015002 |
[7] | Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin H Q, and Miao M S 2018 Nat. Commun. 9 951 |
[8] | Sanloup C, Bonev S A, Hochlaf M, and Casely H E M 2013 Phys. Rev. Lett. 110 265501 |
[9] | Falenty A, Hansen T C, and Kuhs W F 2014 Nature 516 231 |
[10] | Liu H, Yao Y, and Klug D D 2015 Phys. Rev. B 91 014102 |
[11] | Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T, and Xing D 2019 Nat. Phys. 15 1065 |
[12] | Lotz H and Schouten J 2001 Phys. Rev. B 64 184101 |
[13] | Kim M and Yoo C S 2011 J. Chem. Phys. 134 044519 |
[14] | Jacobson L C, Hujo W, and Molinero V 2009 J. Phys. Chem. B 113 10298 |
[15] | Peng F, Wang Y, Wang H, Zhang Y, and Ma Y 2015 Phys. Rev. B 92 094104 |
[16] | Cotton F A, Wilkinson G, Murillo C A, Bochmann M, and Grimes R 1988 Advanced Inorganic Chemistry 6 edn (New York: Wiley) |
[17] | O'Sullivan O T O and Zdilla M J 2020 Chem. Rev. 120 5682 |
[18] | Stierstorfer J and Klapotke T M 2010 Annu. Rev. Earth Planet. 33 493 |
[19] | Mailhiot C, Yang L, and McMahan A 1992 Phys. Rev. B 46 14419 |
[20] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558 |
[21] | Ma Y, Oganov A R, Li Z, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501 |
[22] | Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, and Ma Y 2012 Phys. Rev. Lett. 109 175502 |
[23] | Sun J, Martinez-Canales M, Klug D D, Pickard C J, and Needs R J 2013 Phys. Rev. Lett. 111 175502 |
[24] | Adeleke A A, Greschner M J, Majumdar A, Wan B, Liu H, Li Z, Gou H, and Yao Y 2017 Phys. Rev. B 96 224104 |
[25] | Ji C, Adeleke A A, Yang L, Wan B, Gou H, Yao Y, Li B, Meng Y, Smith J S, Prakapenka V B et al. 2020 Sci. Adv. 6 eaba9206 |
[26] | Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, and Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001 |
[27] | Vaitheeswaran G and Babu K R 2012 J. Chem. Sci. 124 1391 |
[28] | Ji C, Zhang F, Hou D, Zhu H, Wu J, Chyu M C, Levitas V I, and Ma Y 2011 J. Phys. Chem. Solids 72 736 |
[29] | Zhang S, Zhao Z, Liu L, and Yang G 2017 J. Power Sources 365 155 |
[30] | Liu Z, Li D, Tian F, Duan D, Li H, and Cui T 2020 Inorg. Chem. 59 8002 |
[31] | Peng F, Yao Y, Liu H, and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 |
[32] | Liu L, Wang D, Zhang S, and Zhang H 2021 J. Mater. Chem. A 9 16751 |
[33] | Vos D W, Finger L, Hemley R, Hu J, Mao H, and Schouten J 1992 Nature 358 46 |
[34] | Li Y, Feng X, Liu H, Hao J, Redfern S A, Lei W, Liu D, and Ma Y 2018 Nat. Commun. 9 722 |
[35] | Hou J, Weng X J, Oganov A R, Shao X, Gao G, Dong X, Wang H T, Tian Y, and Zhou X F 2021 Phys. Rev. B 103 L060102 |
[36] | Plisson T, Weck G, and Loubeyre P 2014 Phys. Rev. Lett. 113 025702 |
[37] | Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116 |
[38] | Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063 |
[39] | Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q, Ma Y, and Zou G 2011 Phys. Rev. Lett. 106 145501 |
[40] | Lv J, Wang Y, Zhu L, and Ma Y 2011 Phys. Rev. Lett. 106 015503 |
[41] | Miao M S 2013 Nat. Chem. 5 846 |
[42] | Liu L, Zhao Z, Yu T, Zhang S, Lin J, and Yang G 2018 J. Phys. Chem. C 122 6801 |
[43] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[44] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[45] | Blochl P E 1994 Phys. Rev. B 50 17953 |
[46] | Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748 |
[47] | Parlinski K, Li Z, and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 |
[48] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[49] | Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104 |
[50] | Grimme S, Ehrlich S, and Goerigk L 2011 J. Comput. Chem. 32 1456 |
[51] | Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196 |
[52] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
[53] | Dronskowski R and Blochl P E 1993 J. Chem. Phys. 97 8617 |
[54] | Maintz S, Deringer V L, Tchougreeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030 |
[55] | Mori-Sanchez H, Contreras J, Cohen A J, and Yang W 2010 J. Am. Chem. Soc. 132 6498 |
[56] | Otero-de-la-Roza A, Johnson E R, and Luaña V 2014 Comput. Phys. Commun. 185 1007 |
[57] | Humphrey W, Dalke A, and Schulten K 1996 J. Mol. Graphics 14 33 |
[58] | Bini L R, Ulivi L, Kreutz J, and Jodl H J 2000 J. Chem. Phys. 112 8522 |
[59] | Pickard C J and Needs R 2009 Phys. Rev. Lett. 102 125702 |
[60] | He Y G, Tang X Z, and Pu Y K 2010 Physica B 405 4335 |
[61] | Wooldridge P J, Richardson H H, and Devlin J P 1987 J. Chem. Phys. 87 4126 |
[62] | Gryko J, McMillan P F, Marzke R F, Ramachandran G K, Patton D, Deb S K, and Sankey O F 2000 Phys. Rev. B 62 R7707 |
[63] | Guloy A M and Ramlau R 2006 Nature 443 320 |
[64] | Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, and Meng J 2007 Phys. Rev. B 76 054115 |
[65] | Page Y L and Saxe P 2002 Phys. Rev. B 65 104104 |
[66] | Hill R 1952 Proc. Phys. Soc. Sect. A 65 349 |
[67] | Gao F 2006 Phys. Rev. B 73 132104 |
[68] | Gale W F and Totemeier T C 2003 Smithells Metals Reference Book (Amsterdam: Elsevier) |
[69] | Dobratz and Brigitta M 1985 OSTI.GOV/Technical Report: LLNL Explosives Handbook: Properties of Chemical Explosives and Explosives and Explosive Simulants (CA: Lawrence Livermore National Lab) |
[70] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 |
[71] | Zhang Y, Guo Y, Joo Y H, Parrish D A, and Shreeve J M 2010 Chem. - Eur. J. 16 10778 |
[72] | Galvez-Ruiz J C, Holl G, Karaghiosoff K, Klapotke T M et al. 2005 Inorg. Chem. 44 4237 |
[73] | Klapotke T M 2019 Chemistry of High-Energy Materials (Boston: de Gruyter) |
[74] | Yuan J, Xia K, Wu J, and Sun J 2021 Sci. Chin.: Phys. Mech. Astron. 64 1 |
[75] | Li C, Li H, Zong H H, Huang Y, Gozin M, Sun C Q, and Zhang L 2020 iScience 23 100944 |
[76] | Vrcelj R M, Sherwood J N, Kennedy A R, Gallagher H G, and Gelbrich T 2003 Cryst. Growth & Des. 3 1027 |
[77] | Choi C S and Boutin H P 1970 Acta Crystallogr. B 26 1235 |
[78] | Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q, and Sun J 2019 J. Phys. Chem. Lett. 10 6166 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|