CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube |
Yan Wang1, Mingguang Yao1*, Xing Hua1, Fei Jin2*, Zhen Yao1, Hua Yang2, Ziyang Liu2, Quanjun Li1, Ran Liu1, Bo Liu1, Linhai Jiang1, and Bingbing Liu1* |
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
|
|
Cite this article: |
Yan Wang, Mingguang Yao, Xing Hua et al 2022 Chin. Phys. Lett. 39 056101 |
|
|
Abstract The hybridization of fullerene and nanotube structures in newly isolated C$_{90}$ with the $D_{5h}$ symmetric group ($D_{5h}$(1)-C$_{90}$) provides an ideal model as a mediating allotrope of nanocarbon from zero-dimensional (0D) fullerene to one-dimensional nanotube. Raman and infrared spectroscopy combined with classical molecular dynamics simulation were used to investigate the structural evolution of $D_{5h}$(1)-C$_{90}$ at ambient and high pressure up to 35.1 GPa. Interestingly, the high-pressure transformations of $D_{5h}$(1)-C$_{90}$ exhibit the features of both fullerene and nanotube. At around 2.5 GPa, the $D_{5h}$(1)-C$_{90}$ molecule in the crystal undergoes an orientational transition to a restricted rotation. At 6.6 GPa, the tubular hexagonal part occurs and transforms into a dumbbell-like structure at higher pressure. The material starts to amorphize above 13.9 GPa, and the transition is reversible until the pressure exceeds 25 GPa. The amorphization is probably correlated with both the intermolecular bonding and the morphology change. Our results enrich our understanding of structural changes in nanocarbon from 0D to 1D.
|
|
Received: 01 March 2022
Editors' Suggestion
Published: 26 April 2022
|
|
|
|
|
|
[1] | Yamanaka S, Kini N S, Kubo A, Jida S, and Kuramoto H 2008 J. Am. Chem. Soc. 130 4303 |
[2] | Shang Y, Liu Z, Dong J, Yao M, Yang Z, Li Q, Zhai C, Shen F, Hou X, Wang L, Zhang N, Zhang W, Fu R, Ji J, Zhang X, Lin H, Fei Y, Sundqvist B, Wang W, and Liu B 2021 Nature 599 599 |
[3] | Zhang S, Li Z, Luo K, He J, Gao Y, Soldatov A V, Benavides V, Shi K, Nie A, Zhang B, Hu W, Ma M, Liu Y, Wen B, Gao G, Liu B, Zhang Y, Shu Y, Yu D, Zhou X F, Zhao Z, Xu B, Su L, Yang G, Chernogorova O P, and Tian Y 2022 Natl. Sci. Rev. 9 nwab140 |
[4] | Tang H, Yuan X, Cheng Y, Fei H, Liu F, Liang T, Zeng Z, Ishii T, Wang M S, Katsura T, Sheng H, and Gou H 2021 Nature 599 605 |
[5] | Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin S V, Meng Y, Liu Z, Zeng X C, and Mao W L 2012 Science 337 825 |
[6] | Zhang Y, Yao M, Du M, Yao Z, Wang Y, Dong J, Yang Z, Sundqvist B, Kováts P S, and Liu B 2020 J. Am. Chem. Soc. 142 7584 |
[7] | Elliott J A, Sandler J K W, Windle A H, Young R J, and Shaffer M S P 2004 Phys. Rev. Lett. 92 95501 |
[8] | Zang J, Treibergs A, Han Y, and Liu F 2004 Phys. Rev. Lett. 92 105501 |
[9] | Sluiter M H F and Kawazoe Y 2004 Phys. Rev. B 69 224111 |
[10] | Araujo P T, Barbosa N N M, Chacham H et al. 2012 Nano Lett. 12 4110 |
[11] | Li W, Qu F, Liu L, Zhang Z, Liang J, Lu Y, Zhang J, Wang L, Wang C, and Wang T 2022 Angew. Chem. Int. Ed. 61 e202116854 |
[12] | Ye X, Yu P, Shen W, Hu S, Akasaka T, and Lu X 2021 Sol. RRL 5 2100463 |
[13] | Wang S, Li X, Zhang X, Huang P, Fang P, Wang J, Yang S, Wu K, and Du P 2021 Chem. Sci. 12 10506 |
[14] | Yang H, Jin H, Zhen H, Wang Z, Liu Z, Beavers C M, Mercado B Q, Olmstead M M, and Balch A L 2011 J. Am. Chem. Soc. 133 6299 |
[15] | Yang H, Beavers C M, Wang Z, Jiang A, Liu Z, Jin H, Mercado B Q, Olmstead M M, and Balch A L 2010 Angew. Chem. Int. Ed. 49 886 |
[16] | Schettino V, Pagliai M, Ciabini L, and Cardini G 2001 J. Phys. Chem. A 105 11192 |
[17] | Braga S F and Galvão D S 2007 J. Comput. Chem. 28 1724 |
[18] | Wang L, Liu B, Liu D, Yao M, Yu S, Hou Y, Zou B, Cui T, Zou G, Sundqvist B, Luo Z, Li H, Li Y, Liu J, Chen S, Wang G, and Liu Y 2007 Appl. Phys. Lett. 91 103112 |
[19] | Yamawaki H, Yoshida M, Kakudate Y, Usuba S, Yokoi H, Fujiwara S, Aoki K, Ruoff R, Malhotra R, and Lorents D 1993 J. Phys. Chem. 97 11161 |
[20] | Huang Y, Gilson D F R, and Butler I S 1991 J. Phys. Chem. 95 5723 |
[21] | Wagner J, Ramsteiner M, Wild C, and Koidl P 1989 Phys. Rev. B 40 1817 |
[22] | Weiler M, Sattel S, Giessen T, Jung K, Ehrhardt H, Veerasamy V S, and Robertson J 1996 Phys. Rev. B 53 1594 |
[23] | Liu D, Yao M, Wang L, Li Q, Cui W, Liu B, Liu R, Zou B, Cui T, Liu B, Liu J, Sundqvist B, and Wågberg T 2011 J. Phys. Chem. C 115 8918 |
[24] | Maksimov A A, Meletov K P, Osip'yan Y A, Tartakovskii I I, Artemov Y V, and Nudel'Man M A 1993 Sov. J. Exp. Theor. Phys. Lett. 57 816 |
[25] | Rao A M, Menon M, Wang K A, Eklund P C, Subbaswamy K R, Cornett D S, Duncan M A, and Amster I J 1994 Chem. Phys. Lett. 224 106 |
[26] | Thirunavukkuarasu K, Long V C, Musfeldt J L, Borondics F, Klupp G, Kamarás K, and Kuntscher C A 2011 J. Phys. Chem. C 115 3646 |
[27] | Wasa S, Suito K, Kobayashi M, and Onodera A 2000 Solid State Commun. 114 209 |
[28] | Aguiar A L, Barros E B, Capaz R B, Souza F A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, and San-Miguel A 2011 J. Phys. Chem. C 115 5378 |
[29] | Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, and Sundqvist B 2008 Phys. Rev. B 78 205411 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|