CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures |
Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song* |
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
Cite this article: |
Lin Huang, Yongjian Zhou, Tingwen Guo et al 2022 Chin. Phys. Lett. 39 047502 |
|
|
Abstract We investigate the spin Hall magnetoresistance (SMR) in all-antiferromagnetic heterostructures $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ with Pt contacts. When the temperature is ultralow ($ < $ 50 K), the spin current generated in the Pt layer cannot be transmitted through Cr$_{2}$O$_{3}$ ($t = 4$ nm), and the SMR is near zero. Meanwhile, when the temperature is higher than the spin fluctuation temperature $T_{\rm F}$ ($\approx $ 50 K) of Cr$_{2}$O$_{3}$ and lower than its Néel temperature $T_{\rm N}$ ($\approx $ 300 K), the spin current goes through the Cr$_{2}$O$_{3}$ layer and is reflected at the $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ interface; an antiferromagnetic (negative) SMR is observed. As temperature increases higher than $T_{\rm N}$, paramagnetic (positive) SMR mainly arises from the spin current reflection at the Cr$_{2}$O$_{3}$/Pt interface. The transition temperatures from negative to positive SMR are enhanced with increasing Cr$_{2}$O$_{3}$ layer thickness, accompanied by the absence of SMR signals when $t = 10$ nm. Such a tunable SMR builds a bridge between spin transport and structures. It also enriches antiferromagnetic spintronics.
|
|
Received: 01 February 2022
Editors' Suggestion
Published: 28 March 2022
|
|
PACS: |
75.50.Ee
|
(Antiferromagnetics)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
|
|
|
[1] | Hellman F et al. 2017 Rev. Mod. Phys. 89 025006 |
[2] | Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, and Saitoh E 2013 Phys. Rev. Lett. 110 206601 |
[3] | Hou D, Qiu Z, Barker J, Sato K, Yamamoto K, Vélez S, Gomez-Perez J M, Hueso L E, Casanova F, and Saitoh E 2017 Phys. Rev. Lett. 118 147202 |
[4] | Zhao Z P, Guo Q, Chen F H, Zhang K W, and Jiang Y 2021 Rare Met. 40 2862 |
[5] | Chen Y, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, and Bauer G E W 2013 Phys. Rev. B 87 144411 |
[6] | Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Li X, Ge J, Xing Y, Zhu Z, Gao P, Sun L, and Wang J 2019 Chin. Phys. Lett. 36 057402 |
[7] | Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Liu L P, Zhang S L, Zhang Y, Li H H, Wang B M, Wu Y H, Zhang S, and Li R W 2016 Appl. Phys. Lett. 109 032410 |
[8] | Baldrati L, Ross A, Niizeki T, Schneider C, Ramos R, Cramer J, Gomonay O, Filianina M, Savchenko T, Heinze D, Kleibert A, Saitoh E, Sinova J, and Kläui M 2018 Phys. Rev. B 98 024422 |
[9] | Lin W and Chien C L 2017 Phys. Rev. Lett. 118 067202 |
[10] | Dong B, Baldrati L, Schneider C, Niizeki T, Ramos R, Ross A, Cramer J, Saitoh E, and Kläui M 2019 Appl. Phys. Lett. 114 102405 |
[11] | Qiu Z, Hou D, Barker J, Yamamoto K, Gomonay O, and Saitoh E 2018 Nat. Mater. 17 577 |
[12] | Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z, Zhang S, Liu Y W, and Han X F 2020 Nat. Electron. 3 304 |
[13] | Morin F J 1950 Phys. Rev. 78 819 |
[14] | Zhou Y J, Chen X Z, Zhou X F, Bai H, Chen R Y, Pan F, and Song C 2020 J. Appl. Phys. 127 163904 |
[15] | Fischer J, Althammer M, Vlietstra N, Huebl H, Goennenwein S T B, Gross R, Geprägs S, and Opel M 2020 Phys. Rev. Appl. 13 014019 |
[16] | Kosub T, Kopte M, Radu F, Schmidt O G, and Makarov D 2015 Phys. Rev. Lett. 115 097201 |
[17] | Kosub T, Kopte M, H€U R, Appel P, Shields B, Maletinsky P, Hübner R, Liedke M O, Fassbender J, Schmidt O G, and Makarov D 2017 Nat. Commun. 8 13985 |
[18] | Moriyama T, Shiratsuchi Y, Iino T, Aono H, Suzuki M, Nakamura T, Kotani Y, Nakatani R, Nakamura K, and Ono T 2020 Phys. Rev. Appl. 13 034052 |
[19] | Morrish A H 1994 Canted Antiferromagnetism: Hematite (Singapore: World Scientific) |
[20] | Ross A, Lebrun R, Ulloa C, Grave D A, Kay A, Baldrati L, Kronast F, Valencia S, Rothschild A, and Kläui M 2020 Phys. Rev. B 102 094415 |
[21] | Schlitz R, Kosub T, Thomas A, Fabretti S, Nielsch K, Makarovand D, and Goennenwein S T B 2018 Appl. Phys. Lett. 112 132401 |
[22] | Corliss L M, Hastings J M, Nathans R, and Shirane G 1965 J. Appl. Phys. 36 1099 |
[23] | Pisarev R V, Krichevtsov B B, and Pavlov V V 1991 Phase Transit. 37 63 |
[24] | Huang L, Zhou Y, Qiu H S, Guo T, Pan F, Jin B, and Song C 2021 Appl. Phys. Lett. 119 212401 |
[25] | Cheng Y, Yu S S, Ahmed A S, Zhu M L, Rao Y, Ghazisaeidi M, Hwang J, and Yang F Y 2019 Phys. Rev. B 100 220408 |
[26] | Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H, and Pan F 2021 Nat. Mater. 20 800 |
[27] | Chen S, Li D, Cui B, Xi L, Si M, Yang D, and Xue D 2018 J. Phys. D 51 095001 |
[28] | Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprägs S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L, Gupta A, Chen Y T, Bauer G E W, Saitoh E, and Goennenwein S T B 2013 Phys. Rev. B 87 224401 |
[29] | Aqeel A, Vlietstra N, Heuver J A, Bauer G E W, Noheda B, van Wees B J, and Palstra T T M 2015 Phys. Rev. B 92 224410 |
[30] | Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J, and Yang H 2019 Science 366 1125 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|