CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi |
Weizheng Cao1, Yunlong Su1, Qi Wang1,2, Cuiying Pei1, Lingling Gao1, Yi Zhao1, Changhua Li1, Na Yu1, Jinghui Wang1,2*, Zhongkai Liu1,2, Yulin Chen1,2,3, Gang Li1,2*, Jun Li1,2, and Yanpeng Qi1,2,4* |
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China 3Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 4Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Weizheng Cao, Yunlong Su, Qi Wang et al 2022 Chin. Phys. Lett. 39 047501 |
|
|
Abstract As a new type of quantum state of matter hosting low energy relativistic quasiparticles, Weyl semimetals (WSMs) have attracted significant attention for scientific community and potential quantum device applications. In this study, we present a comprehensive investigation of the structural, magnetic, and transport properties of noncentrosymmetric $R$AlSi ($R$ = Sm, Ce), which have been predicted to be new magnetic WSM candidates. Both samples exhibit nonsaturated magnetoresistance, with about 900% and 80% for SmAlSi and CeAlSi, respectively, at temperature of 1.8 K and magnetic field of 9 T. The carrier densities of SmAlSi and CeAlSi exhibit remarkable change around magnetic transition temperatures, signifying that the electronic states are sensitive to the magnetic ordering of rare-earth elements. At low temperatures, SmAlSi reveals prominent Shubnikov–de Haas oscillations associated with the nontrivial Berry phase. High-pressure experiments demonstrate that the magnetic order is robust and survival under high pressure. Our results would yield valuable insights into WSM physics and potentials in applications to next-generation spintronic devices in the $R$AlSi ($R$ = Sm, Ce) family.
|
|
Received: 11 November 2021
Published: 15 March 2022
|
|
PACS: |
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
|
|
|
[1] | Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 |
[2] | Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, and Chen Y L 2014 Science 343 864 |
[3] | Wan X, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101 |
[4] | Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, and Hasan M Z 2015 Science 347 294 |
[5] | Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, Fang Z, Dai X, Qian T, and Ding H 2015 Phys. Rev. X 5 031013 |
[6] | Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X, and Chen G 2015 Phys. Rev. X 5 031023 |
[7] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, and Hasan M Z 2015 Nat. Commun. 6 7373 |
[8] | Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S, and Yan B 2017 New J. Phys. 19 015008 |
[9] | Li X, Xu L, Ding L, Wang J, Shen M, Lu X, Zhu Z, and Behnia K 2017 Phys. Rev. Lett. 119 056601 |
[10] | Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286 |
[11] | Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090 |
[12] | Belopolski I, Manna K, Sanchez D S, Chang G, Ernst B, Yin J, Zhang S S, Cochran T, Shumiya N, Zheng H, Singh B, Bian G, Multer D, Litskevich M, Zhou X, Huang S M, Wang B, Chang T R, Xu S Y, Bansil A, Felser C, Lin H, and Hasan M Z 2019 Science 365 1278 |
[13] | Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, and Lei H 2018 Nat. Commun. 9 3681 |
[14] | Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, and Dudin P 2019 Science 365 1282 |
[15] | Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212 |
[16] | Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, and Zheng H 2017 Sci. Adv. 3 e1603266 |
[17] | Sanchez D S, Chang G, Belopolski I, Lu H, Yin J X, Alidoust N, Xu X, Cochran T A, Zhang X, and Bian Y 2020 Nat. Commun. 11 3356 |
[18] | Chang G, Singh B, Xu S Y, Bian G, Huang S M, Hsu C H, Belopolski I, Alidoust N, Sanchez D S, and Zheng H 2018 Phys. Rev. B 97 041104 |
[19] | Zhang K, Wang T, Pang X, Han F, Shang S L, Hung N T, Liu Z K, Li M, Saito R, Huang S 2020 Phys. Rev. B 102 235162 |
[20] | Ng T, Luo Y, Yuan J, Wu Y, Yang H, and Shen L 2021 Phys. Rev. B 104 014412 |
[21] | Guloy A M and Corbett J D 1991 Inorg. Chem. 30 4789 |
[22] | Hu Z, Du Q, Liu Y, Graf D, and Petrovic C 2020 Appl. Phys. Lett. 117 222410 |
[23] | Hodovanets H, Eckberg C J, Zavalij P Y, Kim H, Lin W C, Zic M, Campbell D J, Higgins J S, and Paglione J 2018 Phys. Rev. B 98 245132 |
[24] | Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E, and White J S 2020 Phys. Rev. Lett. 124 017202 |
[25] | Meng B, Wu H, Qiu Y, Wang C, Liu Y, Xia Z, Yuan S, Chang H, and Tian Z 2019 APL Mater. 7 051110 |
[26] | Destraz D, Das L, Tsirkin S S, Xu Y, Neupert T, Chang J, Schilling A, Grushin A G, Kohlbrecher J, Keller L, Puphal P, Pomjakushina E, and White J S 2020 npj Quantum Mater. 5 5 |
[27] | Liu W, Zhao J, Meng F, Rahman A, Qin Y, Fan J, Pi L, Tian Z, Du H, Zhang L, and Zhang Y 2021 Phys. Rev. B 103 214401 |
[28] | Lyu M, Xiang J, Mi Z, Zhao H, Wang Z, Liu E, Chen G, Ren Z, Li G, and Sun P 2020 Phys. Rev. B 102 085143 |
[29] | Lyu M, Wang Z, Kumar K R, Zhao H, Xiang J, and Sun P 2020 J. Appl. Phys. 127 193903 |
[30] | Gaudet J, Yang H Y, Baidya S, Lu B, Xu G, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Vanderbilt P N D, Tafti F, and Broholm C L 2021 Nat. Mater. 20 1650 |
[31] | Xu L, Niu H, Bai Y, Zhu H, Yuan S, He X, Yang Y, Xia Z, Zhao L, and Tian Z 2021 arXiv:2107.11957 [cond-mat.mtrl-sci] |
[32] | Yang H Y, Singh B, Gaudet J, Lu B, Huang C Y, Chiu W C, Huang S M, Wang B, Bahrami F, and Xu B 2021 Phys. Rev. B 103 115143 |
[33] | TOPAS 2013 Version 5 (Karlsruhe, Germany: Bruker AXS) |
[34] | Mao H K, Xu J A, and Bell P M 1986 J. Geophys. Res. 91 4673 |
[35] | Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G, and Qi Y 2020 Chin. Phys. Lett. 37 066401 |
[36] | Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press) |
[37] | Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) |
[38] | Guo L, Chen T W, Chen C, Chen L, Zhang Y, Gao G Y, Yang J, Li X G, Zhao W Y, Dong S, and Zheng R K 2019 ACS Appl. Electron. Mater. 1 869 |
[39] | Xiang F X, Wang X L, Veldhorst M, Dou S X, and Fuhrer M S 2015 Phys. Rev. B 92 035123 |
[40] | Ding L, Koo J, Yi C, Xu L, Zuo H, Yang M, Shi Y, Yan B, Behnia K, and Zhu Z 2021 J. Phys. D 54 454003 |
[41] | Wang Y Y, Xu S, Sun L L, and Xia T L 2018 Phys. Rev. Mater. 2 021201 |
[42] | An L, Zhu X, Qian Y, Xi C, Ning W, Weng H, and Tian M 2020 Phys. Rev. B 101 205109 |
[43] | Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y, and Wang X 2020 Chin. Phys. Lett. 37 017104 |
[44] | Luo Y, Ghimire N J, Wartenbe M, Choi H, Neupane M, McDonald R D, Bauer E D, Zhu J, Thompson J D, and Ronning F 2015 Phys. Rev. B 92 205134 |
[45] | Luo Y, Ghimire N, Bauer E, Thompson J, and Ronning F 2016 J. Phys.: Condens. Matter 28 055502 |
[46] | Zhang K, Du Y, Wang P, Wei L, Li L, Zhang Q, Qin W, Lin Z, Cheng B, Wang Y, Xu H, Fan X, Sun Z, Wan X, and Zeng C 2020 Chin. Phys. Lett. 37 090301 |
[47] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[48] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[49] | Piva M, Souza J, Brousseau-Couture V, Pakuszewski K, John J K, Adriano C, Pagliuso M C P, and Nicklas M 2021 arXiv:2111.05742 [cond-mat.mtrl-sci] |
[50] | Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
[51] | Gao L, Shen S, Wang Q, Shi W, Zhao Y, Li C, Cao W, Pei C, Ge J Y, Li G, Li J, Chen Y, Yan S, and Qi Y 2021 Appl. Phys. Lett. 119 092405 |
[52] | Qi Y, Guo J, Lei H, Xiao Z, Kamiya T, and Hosono H 2014 Phys. Rev. B 89 024517 |
[53] | Cao W, Zhao N, Pei C, Wang Q, Zhao Y, Gao L, Li C, Yu N, Chen Y, Liu K, and Qi Y 2021 arXiv:2111.02882 [cond-mat.supr-con] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|