Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047301    DOI: 10.1088/0256-307X/39/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface
Cheng Cao1,3†, Shengru Chen1,2†, Jun Deng1, Gang Li1,4, Qinghua Zhang1, Lin Gu1, Tian-Ping Ying1,4, Er-Jia Guo1,2,4*, Jian-Gang Guo1,4*, and Xiaolong Chen1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Cheng Cao, Shengru Chen, Jun Deng et al  2022 Chin. Phys. Lett. 39 047301
Download: PDF(2432KB)   PDF(mobile)(2545KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional electron gas (2DEG) with high electron mobility is highly desired to study the emergent properties and to enhance future device performance. Here we report the formation of 2DEG with high mobility at the interface between rock-salt BaO and perovskite SrTiO$_{3}$. The interface consists of the ionically compensated BaO$_{1-\delta}$ layer and the electronically compensated TiO$_{2}$ layer, which is demonstrated as a perfect interface without lattice mismatch. The so-formed interface features metallic conductivity with ultralow square resistance of $7.3 \times 10^{-4}\,\Omega /\square$ at 2 K and high residual resistance ratios $R_{\rm 300\,K}/R_{\rm 2\,K}$ up to 4200. The electron mobility reaches 69000 cm$^{2}$$\cdot$V$^{-1}$$\cdot$s$^{-1}$ at 2 K, leading to Shubnikov–de Haas oscillations of resistance. Density functional theory calculations reveal that the effective charge transfers from BaO to the Ti 3$d_{xy}$ orbital occur at the interface, leading to the conducting TiO$_{2}$ layer. Our work unravels that BaO can adapt itself by removing oxygen to minimize the lattice mismatch and to provide substantial carriers to SrTiO$_{3}$, which is the key to forming 2DEGs with high mobility at the interfaces.
Received: 26 January 2022      Express Letter Published: 03 March 2022
PACS:  73.40.-c (Electronic transport in interface structures)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  71.10.Ca (Electron gas, Fermi gas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/047301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Cao
Shengru Chen
Jun Deng
Gang Li
Qinghua Zhang
Lin Gu
Tian-Ping Ying
Er-Jia Guo
Jian-Gang Guo
and Xiaolong Chen
[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Herranz G, Basletic M, Bibes M, Ranchal R, Hamzic A, Tafra E, Bouzehouane K, Jacquet E, Contour J P, Barthélémy A, and Fert A 2006 Phys. Rev. B 73 064403
[3] Kalisky B, Bert J A, Klopfer B B, Bell C, Sato H K, Hosoda M, Hikita Y, Hwang H Y, and Moler K A 2012 Nat. Commun. 3 922
[4] Feng Y Q, Jin K J, Ge C, He X, Gu L, Yang Z Z, Guo H Z, Wan Q, He M, Lu H B, and Yang G Z 2016 Chin. Phys. Lett. 33 076801
[5] Dijkkamp D, Venkatesan T, Wu X D, Shaheen S A, Jisrawi N, Minlee Y H, McLean W L, and Croft M 1987 Appl. Phys. Lett. 51 619
[6] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, and Moler K A 2011 Nat. Phys. 7 767
[7] Ma Y, Niu J, Xing W, Yao Y, Cai R, Sun J, Xie X C, Lin X, and Han W 2020 Chin. Phys. Lett. 37 117401
[8] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, and Bhattacharya A 2021 Science 371 716
[9] Gao Q, Zhao Y, Zhou X J, and Zhu Z 2021 Chin. Phys. Lett. 38 077401
[10] Anh L D, Kaneta S, Tokunaga M, Seki M, Tabata H, Tanaka M, and Ohya S 2020 Adv. Mater. 32 1906003
[11] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, and Hwang H Y 2016 Nat. Mater. 15 1255
[12] Cantoni C, Gazquez J, Granozio F M, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, and Maccariello D 2012 Adv. Mater. 24 3952
[13] Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, and Eom C B 2012 Nano Lett. 12 1765
[14] Huang Z, Han K, Zeng S, Motapothula M, Borisevich A Y, Ghosh S, Lu W, Li C, Zhou W, Liu Z, Coey M, Venkatesan T, and Ariando 2016 Nano Lett. 16 2307
[15] Zhang D, Lou W, Miao M, Zhang S C, and Chang K 2013 Phys. Rev. Lett. 111 156402
[16] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, and Winkler D 2007 Phys. Rev. B 75 121404
[17] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, and Fert A 2007 Phys. Rev. Lett. 98 216803
[18] Caviglia A D, Gariglio S, Cancellieri C, Sacepe B, Fete A, Reyren N, Gabay M, Morpurgo A F, and Triscone J M 2010 Phys. Rev. Lett. 105 236802
[19] Breckenfeld E, Bronn N, Karthik J, Damodaran A R, Lee S, Mason N, and Martin L W 2013 Phys. Rev. Lett. 110 196804
[20] Nakagawa N, Hwang H Y, and Muller D A 2006 Nat. Mater. 5 204
[21] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buchner B, Shen B G, Linderoth S, and Pryds N 2013 Nat. Commun. 4 1371
[22] Antoro I D and Kawae T 2021 ECS J. Solid State Sci. Technol. 10 083005
[23] Gagnidze T, Ma H, Cancellieri C, Bona G L, and La M F 2019 Sci. Technol. Adv. Mater. 20 456
[24] Takahashi R and Lippmaa M 2020 ACS Appl. Mater. & Interfaces 12 25042
[25] Sayle D C and Watson G W 2001 J. Phys. Chem. 105 5506
[26] Ron A, Hevroni A, Maniv E, Mograbi M, Jin L, Jia C L, Urban K W, Markovich G, and Dagan Y 2017 Adv. Mater. Interfaces 4 1700688
[27] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908
[28]Zhao Z X, Chen L Q, Yang Q S, Huang Y H, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L H, Guo S Q, Li S L, and Bi J Q 1987 Kexue Tongbao 32 661 (in Chinese)
[29] Cava R J, Batlogg B, Vandover R B, Murphy D W, Sunshine S, Siegrist T, Remeika J P, Rietman E A, Zahurak S, and Espinosa G P 1987 Phys. Rev. Lett. 58 1676
[30] Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, and Kwok W K 1990 Phys. Rev. B 41 1863
[31] Wen J G, Traeholt C, and Zandbergen H W 1993 Physica C 205 354
[32] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[33] Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Matula R A 1979 J. Phys. Chem. Ref. Data 8 1147
[37] Wang Z C, Chen L, Li S S, Ying J S, Tang F, Gao G Y, Fang Y, Zhao W, Cortie D, Wang X, and Zheng R K 2021 npj Quantum Mater. 6 53
[38] Tufte O N and Chapman P W 1967 Phys. Rev. 155 796
[39] Szot K, Speier W, Carius R, Zastrow U, and Beyer W 2002 Phys. Rev. Lett. 88 075508
[40] Jalan B, Stemmer S, Mack S, and Allen S J 2010 Phys. Rev. B 82 081103
[41] Chen Y Z, Trier F, Wijnands T et al. 2015 Nat. Mater. 14 801
[42] Zhang J, Ji W J, Xu J, Geng X Y, Zhou J, Gu Z B, Yao S H, and Zhang S T 2017 Sci. Adv. 3 e1701473
[43] Cao M, Xiong D B, Yang L, Li S, Xie Y, Guo Q, Li Z, Adams H, Gu J, Fan T, Zhang X, and Zhang D 2019 Adv. Funct. Mater. 29 1806792
[44] Lee K, Kim S W, Toda Y, Matsuishi S, and Hosono H 2013 Nature 494 336
[45] Zhang J, Ok J M, Pai Y Y, Lapano J, Skoropata E, Mazza A R, Li H, Huon A, Yoon S, Lawrie B, Brahlek M, Ward T Z, Eres G, Miao H, and Lee H N 2021 Phys. Rev. B 104 L161404
[46] Rubi K, Gosteau J, Serra R, Han K, Zeng S, Huang Z, Warot-Fonrose B, Arras R, Snoeck E, A, Goiran M, and Escoffier W 2020 npj Quantum Mater. 5 9
[47] Kim M, Bell C, Kozuka Y, Kurita M, Hikita Y, and Hwang H Y 2011 Phys. Rev. Lett. 107 106801
[48] Hill D M, Meyer H M, and Weaver J H 1989 J. Appl. Phys. 65 4943
[49] Schuetz P, Christensen D V, Borisov V, Pfaff F, Scheiderer P, Dudy L, Zapf M, Gabel J, Chen Y Z, Pryds N, Rogalev V A, Strocov V N, Schlueter C, Lee T L, Jeschke H O, Valenti R, Sing M, and Claessen R 2017 Phys. Rev. B 96 161409
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 047301
[2] V. D. Esin, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Second-Harmonic Response in Magnetic Nodal-Line Semimetal Fe$_3$GeTe$_2$[J]. Chin. Phys. Lett., 2022, 39(9): 047301
[3] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 047301
[4] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 047301
[5] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 047301
[6] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 047301
[7] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 047301
[8] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 047301
[9] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 047301
[10] Yan-Jing He, Xiao-Yan Tang, Yi-Fan Jia, Ci-Qi Zhou, Yu-Ming Zhang. Temperature-Dependent Effect of Near-Interface Traps on SiC MOS Capacitance[J]. Chin. Phys. Lett., 2018, 35(10): 047301
[11] Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang, Xin-Cun Peng, Ji-Jun Zou, Bin Tang, Guo-Tong Du. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements[J]. Chin. Phys. Lett., 2017, 34(9): 047301
[12] Jun Jiang, An-Quan Jiang. Nanosecond Characterization of Regional Domain Imprint from Fast Domain Switching Currents in Pb(Zr,Ti)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(02): 047301
[13] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 047301
[14] LI Lin, HAN Bai, SONG Wei, WANG Xuan, LEI Qing-Quan. The Effect of the Semiconductive Screen on Space Charge Suppression in Cross-Linked Polyethylene[J]. Chin. Phys. Lett., 2014, 31(10): 047301
[15] S. Zeyrek, A. Turan, M. M. Bülbül. The CV and G/ωV Electrical Characteristics of 60Co γ-Ray Irradiated Al/Si3N4/p-Si (MIS) Structures[J]. Chin. Phys. Lett., 2013, 30(7): 047301
Viewed
Full text


Abstract