PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak |
Longwen Yan*, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong |
Southwestern Institute of Physics, Chengdu 610225, China |
|
Cite this article: |
Longwen Yan, Jinming Gao, Xianggan Miao et al 2022 Chin. Phys. Lett. 39 115202 |
|
|
Abstract The scaling law of divertor heat flux width is one of the key topics of magnetic confinement fusion, which is almost inversely proportional to the poloidal magnetic field on some opened divertor tokamaks. This work focuses on the scaling laws of the closed divertor heat flux width in the HL-2A tokamak under different discharge conditions, such as the Ohmic, L- and H-modes. The results indicate that there are basic similarities of the scaling laws of the heat flux width between the opened and closed divertors. However, a larger spreading width in the private flux region is found, which is relevant to a small expansion factor of the magnetic flux in the closed divertor.
|
|
Received: 31 August 2022
Published: 26 October 2022
|
|
PACS: |
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.55.Rk
|
(Power exhaust; divertors)
|
|
|
|
|
[1] | Soukhanovskii V A, Allen S L, Fenstermacher M E et al. 2016 IEEE Trans. Plasma Sci. 44 3445 |
[2] | Theiler C, Lipschultz B, Harrison J et al. 2017 Nucl. Fusion 57 072008 |
[3] | Goldston R J 2012 Nucl. Fusion 52 013009 |
[4] | Eich T, Leonard A W, Pitts R A et al. 2013 Nucl. Fusion 53 093031 |
[5] | Loarte A, Bosch S, Chankin A et al. 1999 J. Nucl. Mater. 266 587 |
[6] | LaBombard B, Terry J L, Hughes J W et al. 2011 Phys. Plasmas 18 056104 |
[7] | Chang C S, Ku S, Loarte A et al. 2017 Nucl. Fusion 57 116023 |
[8] | Xu X Q, Li N M, Li Z Y et al. 2019 Nucl. Fusion 59 126039 |
[9] | Wu T, Xu M, Nie L et al. 2021 Plasma Sci. Technol. 23 025101 |
[10] | Shi B, Yang Z D, Zhang B et al. 2017 Chin. Phys. Lett. 34 095201 |
[11] | Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices. Plasma Physics Series (Bristol: IOP Publishing) |
[12] | Zhang B, Gong X Z, Gan K F et al. 2016 Fusion Eng. Des. 105 70 |
[13] | Yan L W, Zhang J H, Yuan B S et al. 2005 Plasma Sci. Technol. 7 2797 |
[14] | Yan L W, Hong W Y, Cheng J et al. 2009 J. Nucl. Mater. 390 246 |
[15] | Cheng J, Yan L W, Dong J Q et al. 2013 J. Nucl. Mater. 438 S1200 |
[16] | Gao J M, Li W, Liu Y et al. 2015 J. Nucl. Mater. 463 697 |
[17] | Gao J M, Cheng J, Chen C Y et al. 2017 Nucl. Mater. Energy 12 1025 |
[18] | Huang Z H, Cheng J, Wu N et al. 2022 Plasma Sci. Technol. 24 054002 |
[19] | Gao J M, Cai L Z, Zou X L et al. 2021 Nucl. Fusion 61 066024 |
[20] | Horacek J, Adamek J, Komm M et al. 2020 Nucl. Fusion 60 066016 |
[21] | Wagner F, Becker G, Behringer K et al. 1982 Phys. Rev. Lett. 49 1408 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|