Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 104101    DOI: 10.1088/0256-307X/39/10/104101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optimization of Light Field for Generation of Vortex Knot
Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong*
Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Cite this article:   
Song Wang, Lei Wang, Furong Zhang et al  2022 Chin. Phys. Lett. 39 104101
Download: PDF(3785KB)   PDF(mobile)(3786KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The theory of knots and links focuses on the embedding mode of one or several closed curves in three-dimensional Euclidean space. In an electromagnetic field system, all-optical knots or links composed of phase or polarization singularities have been verified theoretically and experimentally. Recent studies have shown that robust topological all-optical coding can be achieved by using optical knots and links. However, in the current design of optical knots and links based on phase or polarization singularities, the amplitude of light between adjacent singularities is relatively weak. This brings great pressure to detection of optical knots and links and limits their applications. Here, we propose a new optimization method in theory. Compared with the existing design methods, our design method improves the relative intensity distribution of light between adjacent singularities. We verify the feasibility of our design results in experiments. Our study reduces the detection difficulty of optical knots and links, and has a positive significance for promotion of applications of optical knots and links.
Received: 06 August 2022      Published: 29 September 2022
PACS:  41.85.Ew (Particle beam profile, beam intensity)  
  42.15.Dp (Wave fronts and ray tracing)  
  42.15.Eq (Optical system design)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/104101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/104101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Song Wang
Lei Wang
Furong Zhang
and Ling-Jun Kong
[1]Dennis M R, O'Holleran K, and Padgett M J 2009 Singular Optics: Optical Vortices and Polarization Singularities in Progress in Optics (Amerstam: Elsevier) vol 53 chap 5 p 293
[2] Coullet P, Gil L, and Rocca F 1989 Opt. Commun. 73 403
[3] Li P, Guo X, Zhong J, Liu S, Zhang Y, Wei B, and Zhao J 2021 Adv. Phys.: X 6 1843535
[4] O'Neil A T, MacVicar I, Allen L, and Padgett M J 2002 Phys. Rev. Lett. 88 053601
[5] Allen L, Beijersbergen M W, Spreeuw R J C, and Woerdman J P 1992 Phys. Rev. A 45 8185
[6] Mair A, Vaziri A, Weihs G, and Zeilinger A 2001 Nature 412 313
[7] Kong L J, Qian S X, Ren Z C, Wang X L, and Wang H T 2012 Phys. Rev. A 85 035804
[8] Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S M, and Padgett M J 2009 Phys. Rev. Lett. 103 083602
[9] Wang J et al. 2012 Nat. Photon. 6 488
[10] Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, and Capasso F 2017 Science 358 896
[11] Zeng Q, Wang B, Li P, and Zhang X 2018 Phys. Rev. Lett. 120 030401
[12] Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Wang Q, Tu C, Li Y, and Wang H T 2019 Sci. Adv. 5 eaat9206
[13] Brullot W, Vanbel M K, Swusten T, and Verbiest T 2016 Sci. Adv. 2 e1501349
[14] Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Tu C, Li Y, and Wang H T 2020 Chin. Phys. Lett. 37 034204
[15] Fang X, Yang H, Yao W, Wang T, Zhang Y, Gu M, and Xiao M 2021 Adv. Photon. 3 015001
[16] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, and Yu S 2012 Science 338 363
[17] Padgett M and Bowman R 2011 Nat. Photon. 5 343
[18] Kozawa Y, Matsunaga D, and Sato S 2018 Optica 5 86
[19] Moffatt H K 1969 J. Fluid Mech. 35 117
[20] Faddeev L and Niemi A J 1997 Nature 387 58
[21] Battye R A and Sutcliffe P M 1998 Phys. Rev. Lett. 81 4798
[22] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[23] Ruostekoski J and Dutton Z 2005 Phys. Rev. A 72 063626
[24] Martinez A, Ravnik M, Lucero B, Visvanathan R, Žumer S, and Smalyukh I I 2014 Nat. Mater. 13 258
[25] Machon T and Alexander G P 2014 Phys. Rev. Lett. 113 027801
[26] Zhang H, Zhang W, Liao Y, Zhou X, Li J, Hu G, and Zhang X 2020 Nat. Commun. 11 3956
[27] Leach J, Dennis M R, Courtial J, and Padgett M J 2004 Nature 432 165
[28] Irvine W T M and Bouwmeester D 2008 Nat. Phys. 4 716
[29] Dennis M R, King R P, Jack B, O'Holleran K, and Padgett M J 2010 Nat. Phys. 6 118
[30] Pisanty E, Machado G J, Vicuña-Hernández V, Picón A, Celi A, Torres J P, and Lewenstein M 2019 Nat. Photon. 13 569
[31] Leach J, Dennis M R, Courtial J, and Padgett M J 2005 New J. Phys. 7 55
[32] Maucher F, Skupin S, Gardiner S A, and Hughes I G 2018 Phys. Rev. Lett. 120 163903
[33] Romero J, Leach J, Jack B, Dennis M R, Franke-Arnold S, Barnett S M, and Padgett M J 2011 Phys. Rev. Lett. 106 100407
[34] Kong L J, Zhang W, Li P, Guo X, Zhang J, Zhang F, Zhao J, and Zhang X 2022 Nat. Commun. 13 2705
[35] Larocque H, D'Errico A, Ferrer-Garcia M F, Carmi A, Cohen E, and Karimi E 2020 Nat. Commun. 11 5119
[36] Bode B, Dennis M R, Foster D, and King R P 2017 Proc. R. Soc. A 473 20160829
[37] Larocque H, Sugic D, Mortimer D, Taylor A J, Fickler R, Boyd R W, Dennis M R, and Karimi E 2018 Nat. Phys. 14 1079
[38] Guo X, Li P, Zhong J, Liu S, Wei B, Zhu W, Qi S, Cheng H, and Zhao J 2020 Laser & Photon. Rev. 14 1900366
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 104101
[2] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 104101
[3] GUO Li-Na, TANG Zhi-Lie, WANG Jie. Non-Paraxial Propagation of Cylindrical Vector Vortex Beams in the Far-Field[J]. Chin. Phys. Lett., 2014, 31(07): 104101
[4] DENG Hai-Xiao**, FENG Chao, LIU Bo, WANG Dong, WANG Xing-Tao, ZHANG Meng . Characterizing the Temporal Structure of a Relativistic Electron Bunch[J]. Chin. Phys. Lett., 2011, 28(12): 104101
[5] CHU Xiu-Xiang, LIU Ze-Jin, WU Yi. Propagation of Four-Petal Gaussian Beams in Turbulent Atmosphere[J]. Chin. Phys. Lett., 2008, 25(2): 104101
[6] GAO Zeng-Hui, Lü Bai-Da. Off-Axis Astigmatic Gaussian Beam Combination Beyond the Paraxial Approximation[J]. Chin. Phys. Lett., 2007, 24(9): 104101
[7] KANG Xiao-Ping, Lü Bai-Da. Characterization of Nonparaxial Truncated Cosine-Gaussian Beams and the Beam Quality in the Far Field[J]. Chin. Phys. Lett., 2006, 23(9): 104101
[8] GAO Zeng-Hui, Lü Bai-Da. Vectorial Nonparaxial Four-Petal Gaussian Beams and Their Propagation in Free Space[J]. Chin. Phys. Lett., 2006, 23(8): 104101
[9] ZHOU Guo-Quan, CHEN Liang, NI Yong-Zhou. Vectorial Structure of Non-Paraxial Linearly Polarized Gaussian Beam in Far Field[J]. Chin. Phys. Lett., 2006, 23(5): 104101
[10] ZHANG Lei, LU Xuan-Hui, CHEN Xu-Min, HE Sai-Ling. Generation of a Dark Hollow Beam inside a Cavity[J]. Chin. Phys. Lett., 2004, 21(2): 104101
[11] LU Xuan-Hui, CHEN Xu-Min, ZHANG Lei, XUE Da-Jian. High-Order Bessel-Gaussian Beam and Its Propagation Properties [J]. Chin. Phys. Lett., 2003, 20(12): 104101
[12] ZHAO Qiang, XIE Jia-Lin, LI Yong-Gui, ZHUANG Jie-Jia. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser[J]. Chin. Phys. Lett., 2001, 18(4): 104101
Viewed
Full text


Abstract