FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Optimization of Light Field for Generation of Vortex Knot |
Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong* |
Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
Cite this article: |
Song Wang, Lei Wang, Furong Zhang et al 2022 Chin. Phys. Lett. 39 104101 |
|
|
Abstract The theory of knots and links focuses on the embedding mode of one or several closed curves in three-dimensional Euclidean space. In an electromagnetic field system, all-optical knots or links composed of phase or polarization singularities have been verified theoretically and experimentally. Recent studies have shown that robust topological all-optical coding can be achieved by using optical knots and links. However, in the current design of optical knots and links based on phase or polarization singularities, the amplitude of light between adjacent singularities is relatively weak. This brings great pressure to detection of optical knots and links and limits their applications. Here, we propose a new optimization method in theory. Compared with the existing design methods, our design method improves the relative intensity distribution of light between adjacent singularities. We verify the feasibility of our design results in experiments. Our study reduces the detection difficulty of optical knots and links, and has a positive significance for promotion of applications of optical knots and links.
|
|
Received: 06 August 2022
Published: 29 September 2022
|
|
PACS: |
41.85.Ew
|
(Particle beam profile, beam intensity)
|
|
42.15.Dp
|
(Wave fronts and ray tracing)
|
|
42.15.Eq
|
(Optical system design)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
|
|
[1] | Dennis M R, O'Holleran K, and Padgett M J 2009 Singular Optics: Optical Vortices and Polarization Singularities in Progress in Optics (Amerstam: Elsevier) vol 53 chap 5 p 293 |
[2] | Coullet P, Gil L, and Rocca F 1989 Opt. Commun. 73 403 |
[3] | Li P, Guo X, Zhong J, Liu S, Zhang Y, Wei B, and Zhao J 2021 Adv. Phys.: X 6 1843535 |
[4] | O'Neil A T, MacVicar I, Allen L, and Padgett M J 2002 Phys. Rev. Lett. 88 053601 |
[5] | Allen L, Beijersbergen M W, Spreeuw R J C, and Woerdman J P 1992 Phys. Rev. A 45 8185 |
[6] | Mair A, Vaziri A, Weihs G, and Zeilinger A 2001 Nature 412 313 |
[7] | Kong L J, Qian S X, Ren Z C, Wang X L, and Wang H T 2012 Phys. Rev. A 85 035804 |
[8] | Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S M, and Padgett M J 2009 Phys. Rev. Lett. 103 083602 |
[9] | Wang J et al. 2012 Nat. Photon. 6 488 |
[10] | Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, and Capasso F 2017 Science 358 896 |
[11] | Zeng Q, Wang B, Li P, and Zhang X 2018 Phys. Rev. Lett. 120 030401 |
[12] | Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Wang Q, Tu C, Li Y, and Wang H T 2019 Sci. Adv. 5 eaat9206 |
[13] | Brullot W, Vanbel M K, Swusten T, and Verbiest T 2016 Sci. Adv. 2 e1501349 |
[14] | Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Tu C, Li Y, and Wang H T 2020 Chin. Phys. Lett. 37 034204 |
[15] | Fang X, Yang H, Yao W, Wang T, Zhang Y, Gu M, and Xiao M 2021 Adv. Photon. 3 015001 |
[16] | Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, and Yu S 2012 Science 338 363 |
[17] | Padgett M and Bowman R 2011 Nat. Photon. 5 343 |
[18] | Kozawa Y, Matsunaga D, and Sato S 2018 Optica 5 86 |
[19] | Moffatt H K 1969 J. Fluid Mech. 35 117 |
[20] | Faddeev L and Niemi A J 1997 Nature 387 58 |
[21] | Battye R A and Sutcliffe P M 1998 Phys. Rev. Lett. 81 4798 |
[22] | Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, and Cornell E A 1999 Phys. Rev. Lett. 83 2498 |
[23] | Ruostekoski J and Dutton Z 2005 Phys. Rev. A 72 063626 |
[24] | Martinez A, Ravnik M, Lucero B, Visvanathan R, Žumer S, and Smalyukh I I 2014 Nat. Mater. 13 258 |
[25] | Machon T and Alexander G P 2014 Phys. Rev. Lett. 113 027801 |
[26] | Zhang H, Zhang W, Liao Y, Zhou X, Li J, Hu G, and Zhang X 2020 Nat. Commun. 11 3956 |
[27] | Leach J, Dennis M R, Courtial J, and Padgett M J 2004 Nature 432 165 |
[28] | Irvine W T M and Bouwmeester D 2008 Nat. Phys. 4 716 |
[29] | Dennis M R, King R P, Jack B, O'Holleran K, and Padgett M J 2010 Nat. Phys. 6 118 |
[30] | Pisanty E, Machado G J, Vicuña-Hernández V, Picón A, Celi A, Torres J P, and Lewenstein M 2019 Nat. Photon. 13 569 |
[31] | Leach J, Dennis M R, Courtial J, and Padgett M J 2005 New J. Phys. 7 55 |
[32] | Maucher F, Skupin S, Gardiner S A, and Hughes I G 2018 Phys. Rev. Lett. 120 163903 |
[33] | Romero J, Leach J, Jack B, Dennis M R, Franke-Arnold S, Barnett S M, and Padgett M J 2011 Phys. Rev. Lett. 106 100407 |
[34] | Kong L J, Zhang W, Li P, Guo X, Zhang J, Zhang F, Zhao J, and Zhang X 2022 Nat. Commun. 13 2705 |
[35] | Larocque H, D'Errico A, Ferrer-Garcia M F, Carmi A, Cohen E, and Karimi E 2020 Nat. Commun. 11 5119 |
[36] | Bode B, Dennis M R, Foster D, and King R P 2017 Proc. R. Soc. A 473 20160829 |
[37] | Larocque H, Sugic D, Mortimer D, Taylor A J, Fickler R, Boyd R W, Dennis M R, and Karimi E 2018 Nat. Phys. 14 1079 |
[38] | Guo X, Li P, Zhong J, Liu S, Wei B, Zhu W, Qi S, Cheng H, and Zhao J 2020 Laser & Photon. Rev. 14 1900366 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|