Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 098401    DOI: 10.1088/0256-307X/38/9/098401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Elastic Modulus, Hardness, and Fracture Toughness of Li$_{6.4}$La$_{3}$Zr$_{1.4}$Ta$_{0.6}$O$_{12}$ Solid Electrolyte
Shan Hu1,2, Pengyu Xu3, Luize Scalco de Vasconcelos2, Lia Stanciu3, Hongwei Ni1*, and Kejie Zhao2*
1State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
3School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Cite this article:   
Shan Hu, Pengyu Xu, Luize Scalco de Vasconcelos et al  2021 Chin. Phys. Lett. 38 098401
Download: PDF(2866KB)   PDF(mobile)(3000KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Li$_{6.4}$La$_{3}$Zr$_{1.4}$Ta$_{0.6}$O$_{12}$ (LLZTO) is a promising inorganic solid electrolyte due to its high Li$^{+}$ conductivity and electrochemical stability for all-solid-state batteries. Mechanical characterization of LLZTO is limited by the synthesis of the condensed phase. Here we systematically measure the elastic modules, hardness, and fracture toughness of LLZTO polycrystalline pellets of different densities using the customized environmental nanoindentation. The LLZTO samples are sintered using the hot-pressing method with different amounts of Li$_{2}$CO$_{3}$ additives, resulting in the relative density of the pellets varying from 83% to 98% and the largest grain size of $13.21 \pm 5.22$ µm. The mechanical properties show a monotonic increase as the sintered sample densifies, elastic modulus and hardness reach $158.47 \pm 10.10$ GPa and $11.27 \pm 1.38$ GPa, respectively, for LLZTO of 98% density. Similarly, fracture toughness increases from 0.44 to 1.51 MPa$\cdot$m$^{1/2}$, showing a transition from the intergranular to transgranular fracture behavior as the pellet density increases. The ionic conductivity reaches $4.54 \times 10^{-4}$ S/cm in the condensed LLZTO which enables a stable Li plating/stripping in a symmetric solid-state cell for over 100 cycles. This study puts forward a quantitative study of the mechanical behavior of LLZTO of different microstructures that is relevant to the mechanical stability and electrochemical performance of all-solid-state batteries.
Received: 26 April 2021      Editors' Suggestion Published: 02 September 2021
PACS:  84.60.-h (Direct energy conversion and storage)  
  46.05.+b (General theory of continuum mechanics of solids)  
  46.50.+a (Fracture mechanics, fatigue and cracks)  
Fund: Supported by the National Science Foundation (Grant Nos. CMMI-1726392 and DMR-1832707) at Purdue University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/098401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/098401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shan Hu
Pengyu Xu
Luize Scalco de Vasconcelos
Lia Stanciu
Hongwei Ni
and Kejie Zhao
[1] Dunn B, Kamath H, and Tarascon J M 2011 Science 334 928
[2] Cheng F, Liang J, Tao Z, and Chen J 2011 Adv. Mater. 23 1695
[3] Qian J, Henderson W A, Xu W, Bhattacharya P et al. 2015 Nat. Commun. 6 6362
[4] Pervez S A, Cambaz M A, Thangadurai V, and Fichtner M 2019 ACS Appl. Mater. & Interfaces 11 22029
[5] Famprikis T, Canepa P, Dawson J A, Islam M S et al. 2019 Nat. Mater. 18 1278
[6] Zheng F, Kotobuki M, Song S, Lai M O et al. 2018 J. Power Sources 389 198
[7] Wang C, Ping W, Bai Q, Cui H et al. 2020 Science 368 521
[8] Li S, Zhang S Q, Shen L, Liu Q et al. 2020 Adv. Sci. 7 1903088
[9] Hu S, Chen W, Zhou J, Yin F et al. 2014 J. Mater. Chem. A 2 7862
[10] Hu S, Yin F, Uchaker E, Zhang M et al. 2014 J. Phys. Chem. C 118 24890
[11] Hu S, Chen W, Uchaker E, Zhou J et al. 2015 Chem. - Eur. J. 21 18248
[12] Tang Y, Zhang L, Chen J, Sun H et al. 2021 Energy & Environ. Sci. 14 602
[13] Zhong Y, Xie Y, Hwang S, Wang Q et al. 2020 Angew. Chem. Int. Ed. 59 14003
[14] Golozar M, Paolella A, Demers H, Savoie S et al. 2020 Sci. Rep. 10 18410
[15] Zhang X, Wang S, Xue C, Xin C et al. 2019 Adv. Mater. 31 1806082
[16] Masias A, Felten N, Garcia-Mendez R, Wolfenstine J et al. 2019 J. Mater. Sci. 54 2585
[17] Manalastas J W, Rikarte J, Chater R J, Brugge R et al. 2019 J. Power Sources 412 287
[18] Kawahara K, Ishikawa R, Nakayama K, Higashi T et al. 2019 J. Power Sources 441 227187
[19] Gao K, He M, Li Y, Zhang Y et al. 2019 J. Alloys Compd. 791 923
[20] Shen F, Dixit M B, Xiao X, and Hatzell K B 2018 ACS Energy Lett. 3 1056
[21] Han F, Zhu Y, He X, Mo Y et al. 2016 Adv. Energy Mater. 6 1501590
[22] Cheng E J, Sharafi A, and Sakamoto J 2017 Electrochim. Acta 223 85
[23] Kim S, Jung C, Kim H, Thomas-Alyea K E et al. 2020 Adv. Energy Mater. 10 1903993
[24] Valle J M and Sakamoto J 2020 Solid State Ionics 345 115170
[25] Matios E, Wang H, Wang C, Hu X et al. 2019 ACS Appl. Mater. & Interfaces 11 5064
[26] Zekoll S, Marriner-Edwards C, Hekselman A O, Kasemchainan J et al. 2018 Energy & Environ. Sci. 11 185
[27] Han G, Kinzer B, Garcia-Mendez R, Choe H et al. 2020 J. Eur. Ceram. Soc. 40 1999
[28] Hong Y S, Li N, Chen H, Wang P et al. 2018 Energy Storage Mater. 11 118
[29] Cho Y H, Wolfenstine J, Rangasamy E, Kim H et al. 2012 J. Mater. Sci. 47 5970
[30] Xu R, Yang Y, Yin F, Liu P et al. 2019 J. Mech. Phys. Solids 129 160
[31] De Vasconcelos L, Sharma N, Xu R, and Zhao K 2019 Exp. Mech. 59 337
[32] Ni J E, Case E D, Sakamoto J S, Rangasamy E et al. 2012 J. Mater. Sci. 47 7978
[33] Yu S, Schmidt R D, Garcia-Mendez R, Herbert E et al. 2016 Chem. Mater. 28 197
[34] Sharafi A, Haslam C G, Kerns R D, Wolfenstine J et al. 2017 J. Mater. Chem. A 5 21491
[35] De Vasconcelos L S, Xu R, Li J, and Zhao K 2016 Extreme Mech. Lett. 9 495
[36] Xu R, Sun H, de Vasconcelos L S, and Zhao K 2017 J. Electrochem. Soc. 164 A3333
[37] Kim Y, Jo H, Allen J L, Choe H et al. 2016 J. Am. Ceram. Soc. 99 1367
[38] Wolfenstine J, Allen J L, Sakamoto J, Siegel D J et al. 2018 Ionics 24 1271
[39] Schell K G, Lemke F, Bucharsky E C, Hintennach A et al. 2017 J. Mater. Sci. 52 2232
[40] Li H Y, Huang B, Huang Z, and Wang C A 2019 Ceram. Int. 45 18115
Viewed
Full text


Abstract