CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr |
Yuan Wei1,2, Xiaoyan Ma1,2, Zili Feng1,3, Yongchao Zhang1,2, Lu Zhang1,2, Huaixin Yang1,2,4, Yang Qi5, Zi Yang Meng1,6, Yan-Cheng Wang7*, Youguo Shi1,8*, and Shiliang Li1,2,8* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan 4Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China 5State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China 6Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China 7School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China 8Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Yuan Wei, Xiaoyan Ma, Zili Feng et al 2021 Chin. Phys. Lett. 38 097501 |
|
|
Abstract We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet, Cu$_{3}$Zn(OH)$_6$FBr. The specific heat exhibits a $T^{1.7}$ dependence at low temperatures and a shoulder-like feature above it. We construct a microscopic lattice model of $Z_2$ quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities. Surprisingly, we find the entropy associated with the shoulder decreases quickly with grain size $d$, although the system is paramagnetic to the lowest temperature. While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface, the 5.9-nm shell width precludes any trivial explanations. Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate, similar to Pippard's coherence length in superconductors. Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order.
|
|
Received: 12 July 2021
Express Letter
Published: 10 August 2021
|
|
PACS: |
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.40.-s
|
(Critical-point effects, specific heats, short-range order)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302900, 2016YFA0300500, and 2020YFA0406003), the National Natural Science Foundation of China (Grant Nos. 11874401, 11674406, 11961160699, 11774399, and 11804383), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grant Nos. XDB33000000, XDB28000000, XDB25000000, and XDB07020000), the K. C. Wong Education Foundation (Grant Nos. GJTD-2020-01 and GJTD-2018-01), and the Beijing Natural Science Foundation (Grant No. Z180008). |
|
|
[1] | Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, and Senthil T 2020 Science 367 eaay0668 |
[2] | Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 |
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 |
[4] | Wen X G 2017 Rev. Mod. Phys. 89 041004 |
[5] | Wen X G 2019 Science 363 eaal3099 |
[6] | McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, and Sacks R N 1990 Phys. Rev. Lett. 64 2062 |
[7] | Wang J K and Goldman V J 1991 Phys. Rev. Lett. 67 749 |
[8] | Pippard A B and Bragg W L 1953 Proc. R. Soc. London Ser. A 216 547 |
[9] | Han T H, Singleton J, and Schlueter J A 2014 Phys. Rev. Lett. 113 227203 |
[10] | Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, Cruz C D, Yi W, Mei J W, Meng Z Y, Shi Y, and Li S 2018 Phys. Rev. B 98 155127 |
[11] | Tustain K, Nilsen G J, Ritter C, da S I, and Clark L 2018 Phys. Rev. Mater. 2 111405 |
[12] | Wei Y, Ma X, Feng Z, Adroja D, Hillier A, Biswas P, Senyshyn A, Hoser A, Mei J W, Meng Z Y, Luo H, Shi Y, and Li S 2020 Chin. Phys. Lett. 37 107503 |
[13] | Tustain K, Ward-O'Brien B, Bert F, Han T H, Luetkens H, Lancaster T, Huddart B M, Baker P J, and Clark L 2020 arXiv:2005.12615 [cond-mat.str-el] |
[14] | Wen J J and Lee Y S 2019 Chin. Phys. Lett. 36 050101 |
[15] | Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G Q, Meng Z Y, Mei J W, and Shi Y 2017 Chin. Phys. Lett. 34 077502 |
[16] | Wei Y, Feng Z, Hu D H, Lohstroh W, dela C C, Yi W, Ding Z F, Zhang J, Tan C, Shu L, Wang Y C, Wu H Q, Luo J, Mei J W, Meng Z Y, Shi Y, and Li S 2019 arXiv:1710.02991 [cond-mat.str-el] |
[17] | Wen X G 2017 Chin. Phys. Lett. 34 090101 |
[18] | Norman M R 2016 Rev. Mod. Phys. 88 041002 |
[19] | Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 |
[20] | de Vries M A, Kamenev K V, Kockelmann W A, Sanchez-Benitez J, and Harrison A 2008 Phys. Rev. Lett. 100 157205 |
[21] | Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406 |
[22] | Han T H, Norman M R, Wen J J, Rodriguez-Rivera J A, Helton J S, Broholm C, and Lee Y S 2016 Phys. Rev. B 94 060409 |
[23] | Fu M, Imai T, Han T H, and Lee Y S 2015 Science 350 655 |
[24] | Kimchi I, Sheckelton J P, McQueen T M, and Lee P A 2018 Nat. Commun. 9 4367 |
[25] | Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469 |
[26] | Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y, and Shi Y 2018 Chin. Phys. Lett. 36 017502 |
[27] | Balents L, Fisher M P A, and Girvin S M 2002 Phys. Rev. B 65 224412 |
[28] | Isakov S V, Hastings M B, and Melko R G 2011 Nat. Phys. 7 772 |
[29] | Isakov S V, Melko R G, and Hastings M B 2012 Science 335 193 |
[30] | Wang Y C, Zhang X F, Pollmann F, Cheng M, and Meng Z Y 2018 Phys. Rev. Lett. 121 057202 |
[31] | Wang Y C, Fang C, Cheng M, Qi Y, and Meng Z Y 2017 arXiv:1701.01552 [cond-mat.str-el] |
[32] | Sun G Y, Wang Y C, Fang C, Qi Y, Cheng M, and Meng Z Y 2018 Phys. Rev. Lett. 121 077201 |
[33] | Wang Y C, Cheng M, Witczak-Krempa W, and Meng Z Y 2020 arXiv:2005.07337 [cond-mat.str-el] |
[34] | Schnack J, Schulenburg J, and Richter J 2018 Phys. Rev. B 98 094423 |
[35] | Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205 |
[36] | Isakov S V, Kim Y B, and Paramekanti A 2006 Phys. Rev. Lett. 97 207204 |
[37] | Kodama R H, Makhlouf S A, and Berkowitz A E 1997 Phys. Rev. Lett. 79 1393 |
[38] | Mandal S, Banerjee S, and Menon K S R 2009 Phys. Rev. B 80 214420 |
[39] | See the Supplemental Material for more experimental details |
[40] | Hansson T H, Oganesyan V, and Sondhi S L 2004 Ann. Phys. 313 497 |
[41] | Moroz S, Prem A, Gurarie V, and Radzihovsky L 2017 Phys. Rev. B 95 014508 |
[42] | Anderson P W 1973 Mater. Res. Bull. 8 153 |
[43] | Haegeman J, Zauner V, Schuch N, and Verstraete F 2015 Nat. Commun. 6 8284 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|