THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Thermodynamics of the System of Massive Dirac Fermions in a Uniform Magnetic Field |
Ren-Hong Fang1, Ren-Da Dong2, De-Fu Hou2*, and Bao-Dong Sun1* |
1Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China 2Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, Wuhan 430079, China
|
|
Cite this article: |
Ren-Hong Fang, Ren-Da Dong, De-Fu Hou et al 2021 Chin. Phys. Lett. 38 091201 |
|
|
Abstract We construct the grand partition function of the system of massive Dirac fermions in a uniform magnetic field from Landau levels, through which all thermodynamic quantities can be obtained. Making use of the Abel–Plana formula, these thermodynamic quantities can be expanded as power series with respect to the dimensionless variable $b=2eB/T^{2}$. The zero-field magnetic susceptibility is expanded at zero mass, and the leading order term is logarithmic. We also calculate scalar, vector current, axial vector current and energy-momentum tensor of the system through ensemble average approach. Mass correction to chiral separation effect is discussed. For massless chiral fermions, our results recover the chiral magnetic effect for right- and left-handed fermions, as well as chiral separation effect.
|
|
Received: 16 June 2021
Editors' Suggestion
Published: 02 September 2021
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11890713, 11735007, 11890711, and 11947228), and the Chinese Postdoctoral Science Foundation (Grant No. 2019M662316). |
|
|
[1] | Dirac P A M 1928 Proc. R. Soc. London Ser. A 117 610 |
[2] | Anderson C D 1933 Phys. Rev. 43 491 |
[3] | Heisenberg W and Euler H 1936 Z. Phys. 98 714 |
[4] | Weisskopf V 1936 Kong. Dan. Vid. Sel. Mat. Fys. Med. 14N6 1 |
[5] | Schwinger J 1951 Phys. Rev. 82 664 |
[6] | Salam A and Strathdee J A 1975 Nucl. Phys. B 90 203 |
[7] | Blau S K, Visser M, and Wipf A 1991 Int. J. Mod. Phys. A 6 5409 |
[8] | Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320 |
[9] | Shuryak E V 1980 Phys. Rep. 61 71 |
[10] | Kapusta J and Gale C 2006 Finite-temperature field theory: principles and applications (2nd edition), Cambridge university press, Cambridge |
[11] | Cangemi D and Dunne G V 1996 Ann. Phys. 249 582 |
[12] | Hebenstreit F, Alkofer R, and Gies H 2010 Phys. Rev. D 82 105026 |
[13] | Sheng X L, Rischke D H, Vasak D, and Wang Q 2018 Eur. Phys. J. A 54 21 |
[14] | Sheng X L, Fang R H, Wang Q, and Rischke D H 2019 Phys. Rev. D 99 056004 |
[15] | Vasak D, Gyulassy M, and Elze H T 1987 Ann. Phys. 173 462 |
[16] | Gao J H, Liang Z T, Pu S, Wang Q, and Wang X N 2012 Phys. Rev. Lett. 109 232301 |
[17] | Chen J W, Pu S, Wang Q, and Wang X N 2013 Phys. Rev. Lett. 110 262301 |
[18] | Hidaka Y, Pu S, and Yang D L 2017 Phys. Rev. D 95 091901 |
[19] | Gao J H, Liang Z T, Wang Q, and Wang X N 2018 Phys. Rev. D 98 036019 |
[20] | Yang S Z, Gao J H, Liang Z T, and Wang Q 2020 Phys. Rev. D 102 116024 |
[21] | Guo X 2020 Chin. Phys. C 44 104106 |
[22] | Itokazu K, Yanase K, and Yoshinaga N 2018 JPS Conf. Proc. 23 013003 |
[23] | Reisenegger A 2013 arXiv:1305.2542 [astro-ph.SR] |
[24] | Islam S and Basu S 2018 Chin. Phys. Lett. 35 099501 |
[25] | Kharzeev D E, McLerran L D, and Warringa H J 2008 Nucl. Phys. A 803 227 |
[26] | Fukushima K, Kharzeev D E, and Warringa H J 2008 Phys. Rev. D 78 074033 |
[27] | Feng B, Hou D F, and Ren H C 2019 Phys. Rev. D 99 036010 |
[28] | Shi S, Liao J, and Gyulassy M 2019 Chin. Phys. C 43 044101 |
[29] | Adam J et al. (STAR collaboration) 2021 Nucl. Sci. Tech. 32 48 |
[30] | Liang G R, Liao J, Lin S, Yan L, and Li M 2020 Chin. Phys. C 44 094103 |
[31] | Gao J H, Ma G L, Pu S, and Wang Q 2020 Nucl. Sci. Tech. 31 90 |
[32] | Liu Y C and Huang X G 2020 Nucl. Sci. Tech. 31 56 |
[33] | Son D T and Zhitnitsky A R 2004 Phys. Rev. D 70 074018 |
[34] | Metlitski M A and Zhitnitsky A R 2005 Phys. Rev. D 72 045011 |
[35] | Lin S and Yang L 2018 Phys. Rev. D 98 114022 |
[36] | Bali G S, Bruckmann F, Endrodi G, Gruber F, and Schaefer A 2013 J. High Energy Phys. 2013(04) 130 |
[37] | Mao S 2016 Chin. Phys. Lett. 33 112501 |
[38] | Mao S, Wu Y, and Zhuang P 2018 JPS Conf. Proc. 20 011009 |
[39] | Ballon-Bayona A, Shock J P, and Zoakos D 2020 J. High Energy Phys. 2020(10) 193 |
[40] | Bali G S, Endrődi G, and Piemonte S 2020 J. High Energy Phys. 2020(07) 183 |
[41] | Ding H T, Li S T, Shi Q, Tomiya A, Wang X D, and Zhang Y 2021 Acta Phys. Polon. Suppl. 14 403 |
[42] | Buividovich P V, Smith D, and Von Smekal L 2021 arXiv:2104.10012 [hep-lat] |
[43] | Dong R D, Fang R H, Hou D F, and She D 2020 Chin. Phys. C 44 074106 |
[44] | Gao J H, Liang Z T, and Wang Q 2020 Phys. Rev. D 101 096015 |
[45] | Zhang C, Fang R H, Gao J H, and Hou D F 2020 Phys. Rev. D 102 056004 |
[46] | Dariescu M A and Dariescu C 2015 Chin. Phys. Lett. 32 071101 |
[47] | Sheng X L 2019 PhD Dissertation (Frankfurt University) |
[48] | Ni G J and Chen S Q 2003 Advanced Quantum Mechanics 2nd edn (Shanghai: Fudan University Press) |
[49] | Peng H W and Xu X S 2011 Foundations of Theoretical Physics (Beijing: Peking University Press) |
[50] | Pauli W 1927 Z. Phys. 41 81 |
[51] | Landau L 1930 Z. Phys. 64 629 |
[52] | Peskin M and Schroeder D 1995 An Introduction to Quantum Field Theory (New York: Westview Press) |
[53] | Hou D F and Lin S 2018 Phys. Rev. D 98 054014 |
[54] | Gorbar E V, Miransky V A, Shovkovy I A, and Wang X 2013 Phys. Rev. D 88 025025 |
[55] | Kharzeev D E and Son D T 2011 Phys. Rev. Lett. 106 062301 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|