Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 084501    DOI: 10.1088/0256-307X/38/8/084501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals
Jia-Nan Rong1,3, Liang Chen2*, and Kai Chang1,3*
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Jia-Nan Rong, Liang Chen, and Kai Chang 2021 Chin. Phys. Lett. 38 084501
Download: PDF(1012KB)   PDF(mobile)(1193KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically study the Casimir interaction between Weyl semimetals. When the distance $a$ between semi-infinite Weyl semimetals is in the micrometer regime, the Casimir attraction can be enhanced by the chiral anomaly. The Casimir attraction depends sensitively on the relative orientations between the separations ($\boldsymbol{b}_1$, $\boldsymbol{b}_2$) of Weyl nodes in the Brillouin zone and show anisotropic behavior for the relative orientation of these separations ($\boldsymbol{b}_1$, $\boldsymbol{b}_2$) when they orient parallel to the interface. This anisotropy is quite larger than that in conventional birefringent materials. The Casimir force can be repulsive in the micrometer regime if the Weyl semimetal slabs are sufficiently thin and the direction of Weyl nodes separations ($\boldsymbol{b}_1$, $\boldsymbol{b}_2$) is perpendicular to the interface. The Casimir attraction between Weyl semimetal slabs decays slower than $1/a^4$ when the Weyl nodes separations $\boldsymbol{b}_1$ and $\boldsymbol{b}_2$ are both parallel to the interface.
Received: 16 May 2021      Editors' Suggestion Published: 02 August 2021
PACS:  45.20.da (Forces and torques)  
  11.30.Rd (Chiral symmetries)  
  33.55.+b (Optical activity and dichroism)  
Fund: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), the National Natural Science Foundation of China (Grant Nos. 61674145, 11974340, and 11504106), the National Key R&D Program of China (Grant Nos. 2017YFA0303400 and 2018YFA0306101), the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS001 and XDPB22).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/084501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/084501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Nan Rong
Liang Chen
and Kai Chang
[1]Casimir H B G 1948 Kon. Ned. Akad. Wetensch. Proc. 51 793
[2] Munday J N, Capasso F, and Adrian P V 2009 Nature 457 170
[3] Sushkov A O, Kim W J, Dalvit D A R, and Lamoreaux S K 2011 Nat. Phys. 7 230
[4] Hertlein C, Helden L, Gambassi A, Dietrich S, and Bechinger C 2008 Nature 451 172
[5] Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F, and Delsing P 2011 Nature 479 376
[6] Somers D A T, Garrett J L, Palm K J, and Munday J N 2018 Nature 564 386
[7] Levin M, McCauley A P, Rodriguez A W, Reid M T H, and Johnson S G 2010 Phys. Rev. Lett. 105 090403
[8] Zhao R, Zhou J, Koschny Th, Economou E N, and Soukoulis C M 2009 Phys. Rev. Lett. 103 103602
[9] Zeng R and Yang Y P 2011 Chin. Phys. Lett. 28 054201
[10] Leonhardt U and Philbin T G 2007 New J. Phys. 9 254
[11] Jiang Q D and Wilczek F 2019 Phys. Rev. B 99 125403
[12] Jiang Q D and Wilczek F 2019 Phys. Rev. B 99 165402
[13] Grushin A G and Cortijo A 2011 Phys. Rev. Lett. 106 020403
[14] Tse W K and MacDonald A H 2012 Phys. Rev. Lett. 109 236806
[15] Pablo R L and Grushin A G 2014 Phys. Rev. Lett. 112 056804
[16] Wilson J H, Allocca A A, and Galitski V 2015 Phys. Rev. B 91 235115
[17] Wan X G, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101
[18] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, and Ding H 2015 Nat. Phys. 11 724
[19] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, and Hasan M Z 2015 Science 349 613
[20] Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 193 173
[21] Nielsen H B and Ninomiya M 1981 Phys. Lett. B 105 219
[22] Nielsen H B and Ninomiya M 1983 Phys. Lett. B 130 389
[23] Adler S L 1969 Phys. Rev. 177 2426
[24] Bell J S and Jackiw R 1969 Nuovo Cimento A 60 47
[25] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[26] Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, and Chen G F 2015 Phys. Rev. X 5 031023
[27] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133
[28] Grushin A G 2012 Phys. Rev. D 86 045001
[29] Vazifeh M M and Franz M 2013 Phys. Rev. Lett. 111 27201
[30] Goswami P and Tewari S 2013 Phys. Rev. B 88 245107
[31] Zyuzin A A and Zyuzin V A 2015 Phys. Rev. B 92 115310
[32] Hofmann J and Das S S 2016 Phys. Rev. B 93 241402
[33] Berreman D 1972 J. Opt. Soc. Am. 62 502
[34] Dadsetani M and Ebrahimian A 2016 J. Electron. Mater. 45 5867
[35]Milonni P W 1993 The Quantum Vacuum (San Diego, Academic Press) pp 230–231
[36] Xu B, Dai Y M, Zhao L X, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P, and Qiu X G 2016 Phys. Rev. B 93 121110
[37] Munday J N, Iannuzzi D, Barash Y, and Capasso F 2005 Phys. Rev. B 71 042102
[38] Somers D A T and Munday J N 2015 Phys. Rev. B 91 032520
Viewed
Full text


Abstract