Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077302    DOI: 10.1088/0256-307X/38/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$
Shuai Liu1,2,3, Si-Min Nie4, Yan-Peng Qi1, Yan-Feng Guo1, Hong-Tao Yuan5, Le-Xian Yang6,7, Yu-Lin Chen1,8,9, Mei-Xiao Wang1,9*, and Zhong-Kai Liu1,9*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
5National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
6State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
7Frontier Science Center for Quantum Information, Beijing 100084, China
8Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
9ShanghaiTech Laboratory for Topological Physics, Shanghai 201210, China
Cite this article:   
Shuai Liu, Si-Min Nie, Yan-Peng Qi et al  2021 Chin. Phys. Lett. 38 077302
Download: PDF(2209KB)   PDF(mobile)(2303KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological superconductors (TSCs) have been widely investigated in recent years due to their novel physics and ability to host Majorana fermions (MFs) which are key to topological quantum computation. Despite the great interest, only a few compounds have been proposed as candidates of intrinsic TSCs, such as iron-based superconductor FeSe$_{0.55}$Te$_{0.45}$ and 2M-WS$_{2}$. Among them, quasi-one-dimensional superconductor TaSe$_{3}$ possesses fascinating properties such as its simple stoichiometry, layered nature and chemical stability. Here, using scanning tunneling microscope/spectroscopy (STM/STS), we systematically investigate the topography and electronic structure of TaSe$_{3}$. Our STM/STS measurement reveals large atomically flat, defect-free surfaces suitable for the search of MF; electronic density of states consistent with our angle-resolved photoemission result and band-structure calculations, and a uniform superconducting gap with a typical size of $\sim $0.25 meV. Remarkably, additional edge states are observed in the vicinity of the terrace edge, suggesting they may have a topological origin. Our result proves the coexistence of superconductivity and topological electronic structure in TaSe$_{3}$, making it an intriguing platform to investigate topological superconductivity.
Received: 29 March 2021      Published: 05 July 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0305400), the Shanghai Technology Innovation Action Plan 2020-Integrated Circuit Technology Support Program (Grant No. 20DZ1100605), the National Natural Science Foundation of China (Grant Nos. 52072168, 21733001, 51861145201, U1932217, and 11974246), the National Key Basic Research Program of China (Grant No. 2018YFA0306200), and the Science and Technology Commission of Shanghai Municipality (Grant No. 19JC1413900).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/077302       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/077302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Liu
Si-Min Nie
Yan-Peng Qi
Yan-Feng Guo
Hong-Tao Yuan
Le-Xian Yang
Yu-Lin Chen
Mei-Xiao Wang
and Zhong-Kai Liu
[1] Nayak C et al. 2008 Rev. Mod. Phys. 80 1083
[2] Das S S, Nayak C, and Tewari S 2006 Phys. Rev. B 73 220502
[3] Das A et al. 2012 Nat. Phys. 8 887
[4] Deng M T et al. 2012 Nano Lett. 12 6414
[5] Mourik V et al. 2012 Science 336 1003
[6] Wang M X et al. 2012 Science 336 52
[7] Finck A D K et al. 2013 Phys. Rev. Lett. 110 126406
[8] Nadj-Perge S et al. 2014 Science 346 602
[9] Albrecht S M et al. 2016 Nature 531 206
[10] Deng M T et al. 2016 Science 354 1557
[11] Zheng H and Jia J F 2019 Chin. Phys. B 28 67403
[12] Guo B et al. 2020 Chin. Phys. B 29 097403
[13] Sun H H et al. 2016 Phys. Rev. Lett. 116 257003
[14] Wang D F et al. 2018 Science 362 333
[15] Zhang P et al. 2018 Science 360 182
[16] Zhu S Y et al. 2020 Science 367 189
[17] Zhang P et al. 2019 Nat. Phys. 15 41
[18] Liu Q et al. 2018 Phys. Rev. X 8 041056
[19] Yuan Y H et al. 2019 Nat. Phys. 15 1046
[20] Fang Y Q et al. 2019 Adv. Mater. 31 1901942
[21] Li Y W et al. 2021 Nat. Commun. 12 2874
[22] Guan J Y et al. 2019 Sci. Bull. 64 1215
[23] Lv Y F et al. 2017 Sci. Bull. 62 852
[24] Li Y F et al. 2019 Science 366 238
[25] Nie S M et al. 2018 Phys. Rev. B 98 125143
[26] Chen C et al. 2020 Matter 3 2055
[27] Xia W et al. 2020 Phys. Rev. B 101 155117
[28] Ángel S G J and Canadell E 2020 2D Mater. 7 025038
[29] Zhang Y et al. 2020 AIP Adv. 10 095314
[30] Hart S et al. 2014 Nat. Phys. 10 638
[31]Blaha P et al. 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (TU Vienna, Vienna)
[32] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[33] Marzari N et al. 2012 Rev. Mod. Phys. 84 1419
[34] Yamaya K and Oomi G 1982 J. Phys. Soc. Jpn. 51 3512
[35] Dynes R C, Narayanamurti V, and Garno J P 1978 Phys. Rev. Lett. 41 1509
[36] Sambongi T et al. 1977 J. Phys. Soc. Jpn. 42 1421
[37] Tritt T M, Stillwell E P, and Skove M J 1986 Phys. Rev. B 34 6799
[38] Reis F et al. 2017 Science 357 287
[39] Wu R et al. 2016 Phys. Rev. X 6 021017
[40] Tang S J et al. 2017 Nat. Phys. 13 683
[41] Li X B et al. 2016 Phys. Rev. Lett. 116 176803
[42] Liu S et al. 2018 APL Mater. 6 121111
[43] Peng L et al. 2017 Nat. Commun. 8 659
[44] Liu R Z et al. 2019 Chin. Phys. Lett. 36 117301
[45] Weng H M, Dai X, and Fang Z 2014 Phys. Rev. X 4 011002
[46] Manna S et al. 2020 Proc. Natl. Acad. Sci. USA 117 8775
[47] Feldman B E et al. 2017 Nat. Phys. 13 286
[48] Yin J X et al. 2015 Nat. Phys. 11 543
Viewed
Full text


Abstract