GENERAL |
|
|
|
|
Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems |
Zhuo Cheng1 and Zhenhua Yu1,2* |
1Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China 2State Key Laboratory of Optoelectronic Meterials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
|
|
Cite this article: |
Zhuo Cheng and Zhenhua Yu 2021 Chin. Phys. Lett. 38 070302 |
|
|
Abstract We apply supervised machine learning to study the topological states of one-dimensional non-Hermitian systems. Unlike Hermitian systems, the winding number of such non-Hermitian systems can take half integers. We focus on a non-Hermitian model, an extension of the Su–Schrieffer–Heeger model. The non-Hermitian model maintains the chiral symmetry. We find that trained neuron networks can reproduce the topological phase diagram of our model with high accuracy. This successful reproduction goes beyond the parameter space used in the training process. Through analyzing the intermediate output of the networks, we attribute the success of the networks to their mastery of computation of the winding number. Our work may motivate further investigation on the machine learning of non-Hermitian systems.
|
|
Received: 19 March 2021
Published: 03 July 2021
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
|
Fund: Supported by the Key Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 11474179, 11722438, 91736103, and 12074440), and Guangdong Project (Grant No. 2017GC010613). |
|
|
[1] | Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, and Ueda M 2018 Phys. Rev. X 8 031079 |
[2] | Song F, Yao S Y, and Wang Z 2019 Phys. Rev. Lett. 123 246801 |
[3] | Esaki K, Sato M, Hasebe K, and Kohmoto M 2011 Phys. Rev. B 84 205128 |
[4] | Lieu S 2018 Phys. Rev. B 97 045106 |
[5] | Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press) |
[6] | Xie D, Gou W, Xiao T et al. 2019 npj Quantum Inf. 5 55 |
[7] | Dirac 1953 Physica 19 1 |
[8] | Berry M V 1984 Proc. R. Soc. London. 392 45 |
[9] | Heiss W D 2004 J. Phys. A 37 2455 |
[10] | Xu Y, Wang S T, and Duan L M 2017 Phys. Rev. Lett. 118 045701 |
[11] | Deng D L, Li X P, and Das S 2017 Phys. Rev. B 96 195145 |
[12] | Narayan B and Narayan A 2021 Phys. Rev. B 103 035413 |
[13] | Juan C and Roger G M 2017 Nat. Phys. 13 431 |
[14] | Ohtsuki T and Tomi O 2016 J. Phys. Soc. Jpn. 85 123706 |
[15] | Arai S, Ohzeki M, and Tanaka K 2018 J. Phys. Soc. Jpn. 87 033001 |
[16] | Broecker P, Carrasquilla J, Melko R G et al. 2017 Sci. Rep. 7 8823 |
[17] | Zhang Y, Paul G, and Kim E A 2020 Phys. Rev. Res. 2 023283 |
[18] | Wang C and Zhai H 2017 Phys. Rev. B 96 144432 |
[19] | Gao J and Qiao L F 2018 Phys. Rev. Lett. 120 240501 |
[20] | Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. Lett. 120 066401 |
[21] | Sun N, Yi J M, Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. B 98 085402 |
[22] | Ghatak A and Das T 2019 J. Phys.: Condens. Matter 31 263001 |
[23] | Chiu C K and Ryu S 2016 Rev. Mod. Phys. 88 035005 |
[24] | Yin C H, Jiang H, Li L H, Rong L, and Chen S 2018 Phys. Rev. A 97 052115 |
[25] | Flore K K, Elisabet E, Jan C B, and Emil J B 2018 Phys. Rev. Lett. 121 026808 |
[26] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 |
[27] | Noriega L 2005 School of Computing, Staffordshire University (Multilayer Perceptron Tutorial) |
[28] | LeCun Y and Boser B 1989 Neural Comput. 1 541 |
[29] | Ian G, Yoshua B, and Aaron C 2016 Deep Learning (Cambridge, USA: The MIT Press) |
[30] | Xavier G and Yoshua B 2010 JMLR Workshop and Conference Proceedings 9 249 |
[31] | Ketkar N 2017 Deep Learning with Python (Apress, Berkeley, USA: Manning Publications) p 97 |
[32] | Polyak B T 1964 USSR Comput. Math. Math. Phys. 4 1 |
[33] | Niu Q 1999 Neural Networks 12 145 |
[34] | Bottou L 2012 Stochastic Gradient Descent Tricks (Berlin: Springer) p 421 |
[35] | Stehman S V 1997 Remote Sens. Environ. 62 77 |
[36] | Deng X Y, Liu Q, Deng Y, and Mahadevand S 2016 Inf. Sci. 340 250 |
[37] | Kazuki Y and Shuichi M 2019 Phys. Rev. Lett. 123 066404 |
[38] | Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402 |
[39] | Zhang L F, Tang L Z, Huang Z H, Zhang G Q, Huang W, and Zhang D W 2021 Phys. Rev. A 103 012419 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|