NUCLEAR PHYSICS |
|
|
|
|
Relativistic Chiral Description of the $^1\!S_0$ Nucleon–Nucleon Scattering |
Xiu-Lei Ren1,2, Chun-Xuan Wang3, Kai-Wen Li3,4, Li-Sheng Geng3,5,6*, and Jie Meng1,3,4* |
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China 2Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany 3School of Physics, Beihang University, Beijing 102206, China 4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan 5Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China 6School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
|
|
Cite this article: |
Xiu-Lei Ren, Chun-Xuan Wang, Kai-Wen Li et al 2021 Chin. Phys. Lett. 38 062101 |
|
|
Abstract Recently, a relativistic chiral nucleon–nucleon interaction was formulated up to leading order, which provides a good description of the phase shifts of $J\leq1$ partial waves [Chin. Phys. C 42 (2018) 014103]. Nevertheless, a separable regulator function that is not manifestly covariant was used in solving the relativistic scattering equation. In the present work, we first explore a covariant and separable form factor to regularize the kernel potential and then apply it to study the simplest but most challenging $^1\!S_0$ channel which features several low-energy scales. In addition to being self-consistent, we show that the resulting relativistic potential can describe quite well the unique features of the $^1\!S_0$ channel at leading order, in particular the pole position of the virtual bound state and the zero amplitude at the scattering momentum $\sim $340 MeV, indicating that the relativistic formulation may be more natural from the viewpoint of effective field theories.
|
|
Received: 09 February 2021
Published: 25 May 2021
|
|
|
|
Fund: Supported by the China Scholarship Council, the National Natural Science Foundation of China (Grant Nos. 11375024, 11522539, 11735003, 11335002, and 11775099), NSFC and DFG through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11621131001, DFG Grant No. TRR110), the China Postdoctoral Science Foundation (Grant Nos. 2016M600845 and 2017T100008), the Major State 973 Program of China (Grant No. 2013CB834400), and the Fundamental Research Funds for the Central Universities. |
|
|
[1] | Bedaque P F and van Kolck U 2002 Annu. Rev. Nucl. Part. Sci. 52 339 |
[2] | Epelbaum E, Hammer H W, and Meißner U G 2009 Rev. Mod. Phys. 81 1773 |
[3] | Machleidt R and Entem D R 2011 Phys. Rep. 503 1 |
[4] | Epelbaum E and Meißner U G 2012 Annu. Rev. Nucl. Part. Sci. 62 159 |
[5] | Weinberg S 1979 Physica A 96 327 |
[6] | Weinberg S 1990 Phys. Lett. B 251 288 |
[7] | Weinberg S 1991 Nucl. Phys. B 363 3 |
[8] | Entem D R and Machleidt R 2003 Phys. Rev. C 68 041001 |
[9] | Epelbaum E, Glockle W, and Meißner U G 2005 Nucl. Phys. A 747 362 |
[10] | Epelbaum E, Krebs H, Lee D, and Meißner U G 2011 Phys. Rev. Lett. 106 192501 |
[11] | Tews I, Krüger T, Hebeler K, and Schwenk A 2013 Phys. Rev. Lett. 110 032504 |
[12] | Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2013 Phys. Rev. Lett. 110 112502 |
[13] | Hergert H, Bogner S K, Binder S, Calci A, and Langhammer J 2013 Phys. Rev. C 87 034307 |
[14] | Hergert H, Binder S, Calci A, Langhammer J, and Roth R 2013 Phys. Rev. Lett. 110 242501 |
[15] | Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2014 Phys. Rev. Lett. 112 102501 |
[16] | Jansen G R, Engel J, Hagen G, Navratil P, and Signoracci A 2014 Phys. Rev. Lett. 113 142502 |
[17] | Bogner S K, Hergert H, Holt J D, Schwenk A, and Binder S 2014 Phys. Rev. Lett. 113 142501 |
[18] | Lynn J E, Carlson J, Epelbaum E, Gandolfi S, and Gezerlis A 2014 Phys. Rev. Lett. 113 192501 |
[19] | Hagen G et al. 2016 Nat. Phys. 12 186 |
[20] | Elhatisari S, Lee D, Rupak G, Epelbaum E, and Krebs H 2015 Nature 528 111 |
[21] | Lapoux V, Somà V, Barbieri C, Hergert H, and Holt J D 2016 Phys. Rev. Lett. 117 052501 |
[22] | Elhatisari S, Epelbaum E, Krebs H, Lähde T A, and Lee D 2017 Phys. Rev. Lett. 119 222505 |
[23] | Epelbaum E, Krebs H, and Meißner U G 2015 Phys. Rev. Lett. 115 122301 |
[24] | Reinert P, Krebs H, and Epelbaum E 2018 Eur. Phys. J. A 54 86 |
[25] | Entem D R, Kaiser N, Machleidt R, and Nosyk Y 2015 Phys. Rev. C 91 014002 |
[26] | Entem D R, Machleidt R, and Nosyk Y 2017 Phys. Rev. C 96 024004 |
[27] | Stoks V G J, Klomp R A M, Terheggen C P F, and de Swart J J 1994 Phys. Rev. C 49 2950 |
[28] | Wiringa R B, Stoks V G J, and Schiavilla R 1995 Phys. Rev. C 51 38 |
[29] | Machleidt R 2001 Phys. Rev. C 63 024001 |
[30] | 2016 International Review of Nuclear Physics, in Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) vol 10 |
[31] | Geng L S, Martin C J, Alvarez-Ruso L, and Vicente V M J 2008 Phys. Rev. Lett. 101 222002 |
[32] | Ren X L, Geng L S, Martin C J, Meng J, and Toki H 2012 J. High Energy Phys. 2012 73 |
[33] | Ren X L, Geng L S, and Meng J 2015 Phys. Rev. D 91 051502 |
[34] | Altenbuchinger M, Geng L S, and Weise W 2014 Phys. Rev. D 89 014026 |
[35] | Geng L S 2013 Front. Phys. 8 328 |
[36] | Ren X L, Li K W, Geng L S, Long B W, and Ring P 2018 Chin. Phys. C 42 014103 |
[37] | Li K W, Ren X L, Geng L S, and Long B W 2018 Chin. Phys. C 42 014105 |
[38] | Song J, Li K W, and Geng L S 2018 Phys. Rev. C 97 065201 |
[39] | Li K W, Hyodo T, and Geng L S 2018 Phys. Rev. C 98 065203 |
[40] | Xiao Y, Geng L S, and Ren X L 2019 Phys. Rev. C 99 024004 |
[41] | Bai Q Q, Wang C X, Xiao Y, and Geng L S 2020 Phys. Lett. B 809 135745 |
[42] | Xiao Y, Wang C X, Lu J X, and Geng L S 2020 Phys. Rev. C 102 054001 |
[43] | Song J, Xiao Y, Liu Z W, Wang C X, and Li K W 2020 Phys. Rev. C 102 065208 |
[44] | Liu Z W, Song J, Li K W, and Geng L S 2021 Phys. Rev. C 103 025201 |
[45] | Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965 |
[46] | Shen S, Hu J, Liang H, Meng J, and Ring P 2016 Chin. Phys. Lett. 33 102103 |
[47] | Shen S, Liang H, Meng J, Ring P, and Zhang S 2017 Phys. Rev. C 96 014316 |
[48] | Shen S, Liang H, Long W H, Meng J, and Ring P 2019 Prog. Part. Nucl. Phys. 109 103713 |
[49] | Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232 |
[50] | Kadyshevsky V G 1968 Nucl. Phys. B 6 125 |
[51] | Erkelenz K 1974 Phys. Rep. 13 191 |
[52] | Ueda T and Green A E S 1968 Phys. Rev. 174 1304 |
[53] | Machleidt R, Holinde K, and Elster C 1987 Phys. Rept. 149 1 |
[54] | Jackson A D, Riska D O, and Verwest B 1975 Nucl. Phys. A 249 397 |
[55] | Holinde K and Machleidt R 1976 Nucl. Phys. A 256 479 |
[56] | Woloshyn R M and Jackson A D 1972 Nucl. Phys. A 185 131 |
[57] | Nagels M M, Rijken T A, and de Swart J J 1978 Phys. Rev. D 17 768 |
[58] | Ordonez C, Ray L, and van Kolck U 1994 Phys. Rev. Lett. 72 1982 |
[59] | Epelbaum E, Gloeckle W, and Meißner U G 2000 Nucl. Phys. A 671 295 |
[60] | Nogga A, Timmermans R G E, and van Kolck U 2005 Phys. Rev. C 72 054006 |
[61] | Epelbaum E 2000 PhD Thesis (Julich, Forschungszentrum) |
[62] | Epelbaum E, Krebs H, and Meißner U G 2015 Eur. Phys. J. A 51 53 |
[63] | van Kolck U 1999 Nucl. Phys. A 645 273 |
[64] | Lutz M 2000 Nucl. Phys. A 677 241 |
[65] | Sánchez S M, Yang C J, Long B, and van Kolck U 2018 Phys. Rev. C 97 024001 |
[66] | Olive K A 2016 Chin. Phys. C 40 100001 |
[67] | Polinder H, Haidenbauer J, and Meißner U G 2006 Nucl. Phys. A 779 244 |
[68] | Djukanovic D, Gegelia J, Scherer S, and Schindler M R 2007 Few-Body Syst. 41 141 |
[69] | Woloshyn R M and Jackson A D 1973 Nucl. Phys. B 64 269 |
[70] | Thompson R H 1970 Phys. Rev. D 1 110 |
[71] | Blankenbecler R and Sugar R 1966 Phys. Rev. 142 1051 |
[72] | Wang C X, Geng L S, and Long B 2021 Chin. Phys. C 45 054101 |
[73] | NN-OnLine, http://nn-online.org |
[74] | Pavon V M and Ruiz A E 2005 Phys. Rev. C 72 044007 |
[75] | Epelbaum E and Gegelia J 2012 Phys. Lett. B 716 338 |
[76] | Stoks V G J, Klomp R A M, Rentmeester M C M, and de Swart J J 1993 Phys. Rev. C 48 792 |
[77] | Kaplan D B, Savage M J, and Wise M B 1998 Phys. Lett. B 424 390 |
[78] | Birse M C 2006 Phys. Rev. C 74 014003 |
[79] | Timoteo V S, Frederico T, Delfino A, and Tomio L 2005 Phys. Lett. B 621 109 |
[80] | Birse M C 2007 Phys. Rev. C 76 034002 |
[81] | Yang C J, Elster C, and Phillips D R 2008 Phys. Rev. C 77 014002 |
[82] | Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 034002 |
[83] | Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 044002 |
[84] | Valderrama M P 2011 Phys. Rev. C 83 024003 |
[85] | Pavon V M 2011 Phys. Rev. C 84 064002 |
[86] | Long B and Yang C J 2011 Phys. Rev. C 84 057001 |
[87] | Long B and Yang C J 2012 Phys. Rev. C 86 024001 |
[88] | Epelbaum E, Gasparyan A M, Gegelia J, and Krebs H 2015 Eur. Phys. J. A 51 71 |
[89] | Baru V, Epelbaum E, Gegelia J, and Ren X L 2019 Phys. Lett. B 798 134987 |
[90] | Ren X L, Epelbaum E, and Gegelia J 2020 Phys. Rev. C 101 034001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|