CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Interfacial Charge Transfer Induced Electronic Property Tuning of MoS$_{2}$ by Molecular Functionalization |
Si-Han Zhou , Chun-Wei Zhou , Xiang-Dong Yang , Yang Li , Jian-Qiang Zhong*, and Hong-Ying Mao* |
Department of Physics, Hangzhou Normal University, Hangzhou 311121, China |
|
Cite this article: |
Si-Han Zhou , Chun-Wei Zhou , Xiang-Dong Yang et al 2021 Chin. Phys. Lett. 38 057305 |
|
|
Abstract The modulation of electrical properties of MoS$_{2}$ has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices. Herein, interfacial charge transfer induced electronic property tuning of MoS$_{2}$ are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements. A downward band-bending of MoS$_{2}$-related electronic states along with the decreasing work function, which are induced by the electron transfer from Cs overlayers to MoS$_{2}$, is observed after the functionalization of MoS$_{2}$ with Cs, leading to n-type doping. Meanwhile, when MoS$_{2}$ is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane ($F_{4}$-TCNQ), an upward band-bending of MoS$_{2}$-related electronic states along with the increasing work function is observed at the interfaces. This is attributed to the electron depletion within MoS$_{2}$ due to the strong electron withdrawing property of $F_{4}$-TCNQ, indicating p-type doping of MoS$_{2}$. Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS$_{2}$ and paves the way to optimize its performance in electronic and optoelectronic devices.
|
|
Received: 25 November 2020
Published: 02 May 2021
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 22002031), the Natural Science Foundation of Zhejiang Province (Grant No. LY18F010019), and the Innovation Project in Hangzhou for Returned Scholar. |
|
|
[1] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H 2013 Nat. Chem. 5 263 |
[2] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S 2012 Nat. Nanotechnol. 7 699 |
[3] | Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, and Zhang H 2012 ACS Nano 6 74 |
[4] | Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y, and Duan X F 2014 Nat. Commun. 5 5143 |
[5] | Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, and Chang C J 2012 Science 335 698 |
[6] | Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, and Kis A 2013 Nat. Nanotechnol. 8 497 |
[7] | Nagamine Y, Sato J, Qian Y, Inoue T, Nakamura T, Maruyama S, Katsumoto S, and Haruyama J 2020 Appl. Phys. Lett. 117 043101 |
[8] | Chen J Y, Liu L, Li C X, and Xu J P 2019 Chin. Phys. Lett. 36 037301 |
[9] | Tan C L and Zhang H 2015 Chem. Soc. Rev. 44 2713 |
[10] | Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, and Tan P H 2016 Chin. Phys. Lett. 33 057801 |
[11] | Zhao Y H, Liu B, Yang J L, He J, and Jiang J 2020 Chin. Phys. Lett. 37 088501 |
[12] | Wang H T, Yuan H T, Hong S S, Li Y B, and Cui Y 2015 Chem. Soc. Rev. 44 2664 |
[13] | Duan X D, Wang C, Pan A L, Yu R Q, and Duan X F 2015 Chem. Soc. Rev. 44 8859 |
[14] | L, Kim H Y, Lotya M, Coleman J N, Kim G T, and Duesberg G S 2011 Adv. Mater. 23 4178 |
[15] | Sun D, Huang D, Wang H Y, Xu G L, Zhang X Y, Zhang R, Tang Y G, Abd E H D, Alshitari W, Al-Bogami A S, Amine K, and Shao M H 2019 Nano Energy 61 361 |
[16] | Shi Y M, Li H N, and Li L J 2015 Chem. Soc. Rev. 44 2744 |
[17] | Wu D, Shi J, Zheng X M, Liu J X, Dou W D, Gao Y L, Yuan X M, Ouyang F P, and Huang H 2019 Phys. Status Solidi RRL 13 1900063 |
[18] | Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, and Li L J 2012 Nanoscale 4 6637 |
[19] | Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, and Wang F 2010 Nano Lett. 10 1271 |
[20] | Lebègue S and Eriksson O 2009 Phys. Rev. B 79 115409 |
[21] | Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805 |
[22] | Tan S J R, Abdelwahab I, Ding Z J, Zhao X X, YangT S, Loke G Z J, Lin H, Verzhbitskiy I, Poh S M, Xu H, Nai C T, Zhou W, Eda G, Jia B H, and Loh K P 2017 J. Am. Chem. Soc. 139 2504 |
[23] | Mouri S, Miyauchi Y, and Matsuda K 2013 Nano Lett. 13 5944 |
[24] | Lin J D, Zhong J Q, Zhong S, Li H, Zhang H, and Chen W 2013 Appl. Phys. Lett. 103 063109 |
[25] | Wang J W, Ji Z Y, Yang G H, Chuai X C, Liu F J, Z, Lu C Y, Wei W, Shi X W, Niu J B, Wang L, Wang H, Chen J Z, Lu N D, Jiang C, Li L, and Liu M 2018 Adv. Funct. Mater. 28 1806244 |
[26] | Park K T and Kong J 2002 Top. Catal. 18 175 |
[27] | Kennou S, Ladas S, and Papageorgopoulos C A 1985 Surf. Sci. 164 290 |
[28] | Ladas S, Foulias S D, and Papageorgopoulos C A 1984 Solid State Commun. 52 543 |
[29] | Hu P, Ye J, He X X, Du D Z, Zhang K, Wang X Z, Xiong Q H, Liu Z, Jiang H, and Kloc C 2016 Sci. Rep. 6 24105 |
[30] | Chen Y Y, Liu F J, Wang J W, Zhang Y, Fan Y, Liu M, Zhao Y F, Wang G T, and Jiang C 2020 Appl. Surf. Sci. 527 146709 |
[31] | Chen Z Y, Santoso I, Wang R, Xie L F, Mao H Y, Huang H, Wang Y Z, Gao X Y, Chen Z K, Ma D G, Wee A T S, and Chen W 2010 Appl. Phys. Lett. 96 213104 |
[32] | Tsiper E V, Soos Z G, Gao W, and Kahn A 2002 Chem. Phys. Lett. 360 47 |
[33] | Stöhr M, Gabriel M, and Möller R 2002 Surf. Sci. 507 330 |
[34] | Wüsten J, Ertl T, Lach S, and Ziegler C 2005 Appl. Surf. Sci. 252 104 |
[35] | Gu C D, Zhang J L, Sun S, Lian X, Ma Z R, Mao H Y, Guo L, Wang Y P, and Chen W 2020 ACS Appl. Mater. Interfces 12 22327 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|