Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 053201    DOI: 10.1088/0256-307X/38/5/053201
ATOMIC AND MOLECULAR PHYSICS |
Core-Excited Molecules by Resonant Intense X-Ray Pulses Involving Electron-Rotation Coupling
Yanping Zhu1, Yanrong Liu1, Xi Zhao1, Victor Kimberg2,3, and Songbin Zhang1*
1School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
2Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm 10691, Sweden
3International Research Center of Spectroscopy and Quantum Chemistry (IRC SQC), Siberian Federal University, Krasnoyarsk 660041, Russia
Cite this article:   
Yanping Zhu, Yanrong Liu, Xi Zhao et al  2021 Chin. Phys. Lett. 38 053201
Download: PDF(555KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102 (2020) 033114; Phys. Rev. Res. 2 (2020) 043348]. As a further step, we present here investigations of the electron-rotation coupling effect in the presence of Auger decay channel for core-excited molecules, based on theoretical modeling of the total electron yield (TEY), resonant Auger scattering (RAS) and x-ray absorption spectra (XAS) for two showcases of CO and CH$^{+}$ molecules excited by resonant intense x-ray pulses. The Wigner D-functions and the universal transition dipole operators are introduced to include the electron-rotation coupling for the core-excitation process. It is shown that with the pulse intensity up to $\mathrm{10^{16}\,W/cm^{2}}$, no sufficient influence of the electron-rotation coupling on the TEY and RAS spectra can be observed. This can be explained by a suppression of the induced electron-rotation dynamics due to the fast Auger decay channel, which does not allow for effective Rabi cycling even at extreme field intensities, contrary to transitions in optical or VUV range. For the case of XAS, however, relative errors of about 10% and 30% are observed for the case of CO and CH$^{+}$, respectively, when the electron-rotation coupling is neglected. It is concluded that conventional treatment of the photoexcitation, neglecting the electron-rotation coupling, can be safely and efficiently employed to study dynamics at the x-ray transitions by means of electron emission spectroscopy, yet the approximation breaks down for nonlinear processes as stimulated emission, especially for systems with light atoms.
Received: 26 January 2021      Published: 02 May 2021
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11934004, 11974230, and 11904192), and the Education of Russian Federation (Grant No. FSRZ-2020-0008).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/053201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/053201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanping Zhu
Yanrong Liu
Xi Zhao
Victor Kimberg
and Songbin Zhang
[1] Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, and Galayda J 2010 Nat. Photon. 4 641
[2] Ullrich J, Rudenko A, and Moshammer R 2012 Annu. Rev. Phys. Chem. 63 635
[3] Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, and Cammarata M 2013 Nat. Photon. 7 215
[4] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, and Williams G J 2016 Rev. Mod. Phys. 88 015007
[5] Pellegrini C, Marinelli A, and Reiche S 2016 Rev. Mod. Phys. 88 015006
[6] Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401
[7] Rohringer N and Santra R 2012 Phys. Rev. A 86 043434
[8] Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404
[9] Berrah N, Bozek J, Costello J, Düsterer S, Fang L, Feldhaus J, Fukuzawa H, Hoener M, Jiang Y, Johnsson P, Kennedy E, Meyer M, Moshammer R, Radcliffe P, Richter M, Rouzée A, Rudenko A, Sorokin A, Tiedtke K, Ueda K, Ullrich J, and Vrakking M 2010 J. Mod. Opt. 57 1015
[10] Seddon E A et al. 2017 Rep. Prog. Phys. 80 115901
[11] Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202
[12] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z 2020 Chin. Phys. Lett. 37 023201
[13] Rohringer N and Santra R 2008 Phys. Rev. A 77 053404
[14] Liu J C, Sun Y P, Wang C K, Ågren H, and Gel'mukhanov F 2010 Phys. Rev. A 81 043412
[15] Cederbaum L S, Chiang Y C, Demekhin P V, and Moiseyev N 2011 Phys. Rev. Lett. 106 123001
[16] Ledingham K W D, McKenna P, and Singhal R P 2003 Science 300 1107
[17] Došlić N 2006 Phys. Rev. A 74 013402
[18] Baykusheva D, Kraus P M, Zhang S B, Rohringer N, and Wörner H J 2014 Faraday Discuss. 171 113
[19] Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417
[20] Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407
[21] Feng H, Zhang Y Z, and Jiang Y H 2016 Laser & Optoelectron. Prog. 53 010002
[22] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M, and Jiang Y 2020 Chin. Phys. Lett. 37 053201
[23] Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da C C C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, and Pfeifer T 2019 Phys. Rev. Lett. 123 163201
[24] Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, and Jiang Y H 2019 Chin. Phys. B 28 093202
[25] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201
[26] Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H, and Xu H F 2020 Chin. Phys. Lett. 37 043301
[27] Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. A 102 033114
[28] Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. Res. 2 043348
[29] Mosnier J P, Kennedy E T, van Kampen P, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, and Bizau J M 2016 Phys. Rev. A 93 061401
[30] Kennedy E T, Mosnier J P, van Kampen P, Bizau J M, Cubaynes D, Guilbaud S, Carniato S, Puglisi A, and Sisourat N 2018 Phys. Rev. A 97 043410
[31] Sun Z, Wang C, Zhao W, and Yang C 2018 J. Chem. Phys. 149 224307
[32] Badankó P, Halász G J, Cederbaum L S, Á V, and Csehi A 2018 J. Chem. Phys. 149 181101
[33] Tóth A, Badankó P, Halász G J, Vibók Á, and Csehi A 2018 Chem. Phys. 515 418
[34] Tóth A, Csehi A, Halász G J, and Vibók A 2020 Phys. Rev. Res. 2 013338
[35] Shelkovnikov A, Butcher R J, Chardonnet C, and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801
[36] Rosen G 1971 Phys. Rev. D 4 275
[37] Cohen E R 1952 Phys. Rev. 88 353
[38] Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413
[39] Piancastelli M N, Neeb M, Kivimäki A, Kempgens B, Köppe H M, Maier K, Bradshaw A M, and Fink R F 1997 J. Phys. B 30 5677
[40] Beck M, Jackle A, Worth G, and Meyer H D 2000 Phys. Rep. 324 1
[41] Agarwal G S 1971 Phys. Rev. A 4 1778
[42] Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628
[43] Brown A, Meath W J, and Tran P 2000 Phys. Rev. A 63 013403
[44] Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665
[45] Domcke W 1991 Phys. Rep. 208 97
[46] Pahl E, Meyer H D, and Cederbaum L S 1996 Z. Phys. D 38 215
[47] Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422
[48] Demekhin P V and Cederbaum L S 2013 J. Phys. B 46 164008
[49] Skytt P, Glans P, Gunnelin K, Guo J H, Nordgren J, Luo Y, and Ågren H 1997 Phys. Rev. A 55 134
[50] Biglari Z, Shayesteh A, and Maghari A 2014 Comput. Theor. Chem. 1047 22
[51] Butler S E, Guberman S L, and Dalgarno A 1977 Phys. Rev. A 16 500
[52]Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D, The MCTDH Package , Version 8.2, (2000); Meyer H D, Version 8.3 (2002), Version 8.4 (2007); Vendrell O and Meyer H D; Version 8.5 (2013); Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 (2019). Used version: exchange with “Used version” See http://mctdh.uni-hd.de/
Viewed
Full text


Abstract