CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Polarization Mechanism in Filled Tungsten Bronze Ba$_{4}$Eu$_{2}$Ti$_{4}$Nb$_{6}$O$_{30}$ with Pinched $P$–$E$ Hysteresis Loops |
Lang Zhu , Xiao-Li Zhu*, Xiao-Qiang Liu , and Xiang-Ming Chen |
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
Cite this article: |
Lang Zhu , Xiao-Li Zhu, Xiao-Qiang Liu et al 2021 Chin. Phys. Lett. 38 047701 |
|
|
Abstract Pinched $P$–$E$ hysteresis loops have been observed in filled tungsten bronze Ba$_{4}$Eu$_{2}$Ti$_{4}$Nb$_{6}$O$_{30}$, indicating the presence of novel polarization mechanisms. We investigate the evolution of polar order in filled tungsten bronze Ba$_{4}$Eu$_{2}$Ti$_{4}$Nb$_{6}$O$_{30}$, together with its dielectric properties over a wide temperature range, from 50 K to 773 K. The temperature dependences of the dielectric properties exhibit two low-temperature dielectric relaxations, at around 300 K (P1), and 100 K (P2), and a high temperature peak at 588 K with no frequency dispersion, indicating the ferroelectric transition temperature $T_{\rm c}$. Pinched $P$–$E$ loops are observed in the temperature range between the low temperature relaxation at P1, and the ferroelectric transition. On cooling, the pinched $P$–$E$ hysteresis loops open gradually, with increasing remnant polarization ($P_{\rm r}$). Two pairs of reversal electric fields indicate two types of polar reversal mechanisms, with an activated energy of 1.41 eV ($E_{1}$), and 0.94 eV ($E_{2}$), respectively. One corresponds to the field-induced transition from a nonpolar to a polar state, which dominates at a high temperature close to $T_{\rm c}$, while the other relates to the reversal of ferroelectric domains which stabilize gradually on cooling. At temperatures below 300 K, the polarization exhibits an evident decrease, probably related to the disruption of the polar order due to the dielectric relaxation at P1.
|
|
Received: 20 November 2020
Published: 06 April 2021
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51790493 and 51961145105). |
|
|
[1] | Yang Z J, Zhu X L, Liu X Q and Chen X M 2018 Appl. Phys. Lett. 113 142902 |
[2] | Yang Z J, Feng W B, Zhu X L, Liu X Q and Chen X M 2019 J. Am. Ceram. Soc. 102 4721 |
[3] | Yang Z J, Zhu X L, Liu X Q and Chen X M 2020 Appl. Phys. Lett. 117 122902 |
[4] | Feng W B, Zhu X L, Liu X Q and Chen X M 2017 J. Mater. Chem. C 5 4009 |
[5] | Feng W B, Zhu X L, Liu X Q, Fu M S, Ma X, Jia S J and Chen X M 2018 J. Am. Ceram. Soc. 101 1623 |
[6] | Feng W B, Zhu X L, Liu X Q and Chen X M 2018 Appl. Phys. Lett. 112 262904 |
[7] | Feng W B, Zhu X L, Liu X Q and Chen X M 2018 J. Appl. Phys. 124 104102 |
[8] | Feng W B, Zhu X L, Liu X Q, and Chen X M 2019 Appl. Phys. Lett. 114 082902 |
[9] | Glass A M 1969 J. Appl. Phys. 40 4699 |
[10] | Stennett M C, Reaney I M, Miles G C, Woodward D I, West A R, Kirk C A and Levin I 2007 J. Appl. Phys. 101 104114 |
[11] | Abrahams S C, Jamieson P B and Bernstein J L 1971 J. Chem. Phys. 54 2355 |
[12] | Zhu X L, Li K and Chen X M 2014 J. Am. Ceram. Soc. 97 329 |
[13] | Zhu X, Fu M, Stennett M C, Vilarinho P M, Levin I, Randall C A, Gardner J, Morrison F D and Reaney I M 2015 Chem. Mater. 27 3250 |
[14] | Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina N V, Abrahams I and Yan H X 2016 J. Mater. Chem. A 4 17279 |
[15] | Tan Q, Li J X and Viehland D 1999 Appl. Phys. Lett. 75 418 |
[16] | Amorin H, Perez J, Fundora A, Portelles J, Guerrero F, Soares M R, Martinez E and Siqueiros J M 2003 Appl. Phys. Lett. 83 4390 |
[17] | Gardner J, Yu F J, Tang C, Kockelmann W, Zhou W Z and Morrison F D 2016 Chem. Mater. 28 4616 |
[18] | Li K, Zhu X L, Liu X Q, Ma X, Fu M S, Kroupa J, Kamba S and Chen X M 2018 NPG Asia Mater. 10 71 |
[19] | Li C, Hong J S, Huang Y H, Ma X, Fu M S, Li J, Liu X Q and Wu Y J 2019 Appl. Phys. Lett. 115 082901 |
[20] | Glazounov A E and Tagantsev A K 1998 Appl. Phys. Lett. 73 856 |
[21] | Vopson M M, Weaver P M, Cain M G, Reece M J and Chong K B 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1867 |
[22] | Vopsaroiu M, Blackburn J, Cain M G and Weaver P M 2010 Phys. Rev. B 82 024109 |
[23] | Zhu X L and Chen X M 2016 Appl. Phys. Lett. 108 152903 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|