ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers |
Yun-Fei Zou1,2 and Li Yu1,2* |
1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
|
|
Cite this article: |
Yun-Fei Zou and Li Yu 2021 Chin. Phys. Lett. 38 023301 |
|
|
Abstract The plasmonic nanocavity is an excellent platform for the study of light matter interaction within a sub-diffraction volume under ambient conditions. We design a structure of plasmonic tweezers, which can trap molecular J-aggregates and also serve as a plasmonic cavity with which to investigate strong light matter interaction. The optical response of the cavity is calculated via finite-difference time-domain methods, and the optical force is evaluated based on the Maxwell stress tensor method. With the help of the coupled oscillator model and virtual exciton theory, we investigate the strong coupling progress at the lower level of excitons, finding that a Rabi splitting of 230 meV can be obtained in a single exciton system. We further analyze the relationship between optical force and model volume in the coupling system. The proposed method offers a way to locate molecular J-aggregates in plasmonic tweezers for investigating optical force performance and strong light matter interaction.
|
|
Received: 23 September 2020
Published: 27 January 2021
|
|
PACS: |
11.15.Me
|
(Strong-coupling expansions)
|
|
37.10.Pq
|
(Trapping of molecules)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301300), the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A09), and the National Natural Science Foundation of China (Grant No. 11574035). |
|
|
[1] | Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288 |
[2] | Grier D G 2003 Nature 424 810 |
[3] | Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769 |
[4] | Cizmar T, Romero L C D, Dholakia K and Andrews D L 2010 J. Phys. B 43 102001 |
[5] | Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J and Quidant R 2014 Nat. Nanotechnol. 9 295 |
[6] | Grigorenko A N, Roberts N W, Dickinson M and Zhang Y 2008 Nat. Photon. 2 365 |
[7] | Fang Z Y, Lin F, Huang S, Song W T and Zhu X 2009 Appl. Phys. Lett. 94 063306 |
[8] | Wang K, Schonbrun E, Steinvurzel P and Crozier K B 2011 Nat. Commun. 2 469 |
[9] | Tsai W, Huang J and Huang C B 2014 Nano Lett. 14 547 |
[10] | Zhang W H, Huang L N, Santschi C and Martin O J F 2010 Nano Lett. 10 1006 |
[11] | Balushi A A A, Kotnala A, Wheaton S, Gelfand R M, Rajashekara Y and Gordon R 2015 Analyst (Amsterdam) 140 4760 |
[12] | Juan M L, Gordon R, Pang Y J, Eftekhari F and Quidant R 2009 Nat. Phys. 5 915 |
[13] | Juan M L, Righini M and Quidant R 2011 Nat. Photon. 5 349 |
[14] | Monroe C 2002 Nature 416 238 |
[15] | Fushman I, Englund D, Faraon A, Stoltz N, Petroff P and Vuckovic J 2008 Science 320 769 |
[16] | Yu H K, Liu B D, Wu W L and Li Z Y 2019 Acta Phys. Sin. 68 149101 (in Chinese) |
[17] | Pang K W, Li H H, Song G and Yu L 2019 Chin. Phys. B 28 127301 |
[18] | Wang B, Zeng X Z and Li Z Y 2020 Photon. Res. 8 343 |
[19] | Torma P and Barnes W L 2015 Rep. Prog. Phys. 78 013901 |
[20] | Li B W, Zu S, Zhang Z P, Zheng L H, Jiang Q, Du B W, Luo Y, Gong Y J, Zhang Y F, Lin F, Shen B, Zhu X, Ajayan P M and Fang Z Y 2019 Opto-Electron. Adv. 2 190008 |
[21] | Jiang P, Li C, Chen Y Y, Song G, Wang Y L and Yu L 2019 Chin. Phys. Lett. 36 107301 |
[22] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 |
[23] | Chikkaraddy R, Nijs B D, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 |
[24] | Novotny L, Bian R X and Xie X S 1997 Phys. Rev. Lett. 79 645 |
[25] | Ashkin A 1978 Phys. Rev. Lett. 40 729 |
[26] | Shoji T and Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957 |
[27] | Wu X H, Gray S K and Pelton M 2010 Opt. Express 18 23633 |
[28] | Rahmani M, Lukyanchuk B S and Hong M 2013 Laser & Photon. Rev. 7 329 |
[29] | Khitrova G, Gibbs H M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81 |
[30] | Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Kall M and Shegai T 2015 Phys. Rev. Lett. 114 157401 |
[31] | Baranov D G, Wersall M, Cuadra J, Antosiewicz T J and Shegai T 2017 ACS Photon. 5 24 |
[32] | Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 |
[33] | Neumeier L, Quidant R and Chang D E 2015 New J. Phys. 17 123008 |
[34] | Mestres P, Berthelot J, Acimovic S S and Quidant R 2016 Light: Sci. & Appl. 5 e16092 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|