Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 017701    DOI: 10.1088/0256-307X/38/1/017701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Erasable Ferroelectric Domain Wall Diodes
Wei Zhang , Chao Wang , Jian-Wei Lian , Jun Jiang*, and An-Quan Jiang*
State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433, China
Cite this article:   
Wei Zhang , Chao Wang , Jian-Wei Lian  et al  2021 Chin. Phys. Lett. 38 017701
Download: PDF(690KB)   PDF(mobile)(682KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The unipolar diode-like domain wall currents in LiNbO$_{3}$ single-crystal nanodevices are not only attractive in terms of their applications in nonvolatile ferroelectric domain wall memory, but also useful in half-wave and full-wave rectifier systems, as well as detector, power protection, and steady voltage circuits. Unlike traditional diodes, where the rectification functionality arises from the contact between n-type and p-type conductors, which are unchanged after off-line production, ferroelectric domain wall diodes can be reversibly created, erased, positioned, and shaped, using electric fields. We demonstrate such functionality using ferroelectric mesa-like cells, formed at the surface of an insulating $X$-cut LiNbO$_{3}$ single crystal. Under the application of an in-plane electric field above a coercive field along the polar $Z$ axis, the domain within the cell is reversed to be antiparallel to the unswitched bottom domain via the formation of a conducting domain wall. The wall current was rectified using two interfacial volatile domains in contact with two side Pt electrodes. Unlike the nonvolatile inner domain wall, the interfacial domain walls disappear to turn off the wall current path after the removal of the applied electric field, or under a negative applied voltage, due to the built-in interfacial imprint fields. These novel devices have the potential to facilitate the random definition of diode-like elements in modern large-scale integrated circuits.
Received: 06 November 2020      Published: 06 January 2021
PACS:  77.22.Ej (Polarization and depolarization)  
  77.80.Fm (Switching phenomena)  
  77.55.+f  
Fund: Supported by the National Key Basic Research Program of China (Grant No. 2019YFA0308500), the Basic Research Project of Shanghai Science and Technology Innovation Action (Grant No. 17JC1400300), and the National Natural Science Foundation of China (Grant Nos. 61674044 and 61904034).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/017701       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/017701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Zhang 
Chao Wang 
Jian-Wei Lian 
Jun Jiang
and An-Quan Jiang
[1] Sharma P, Zhang Q, Sando D, Lei C H, Liu Y, Li J, Nagarajan V and Seidel J 2017 Sci. Adv. 3 e1700512
[2] Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S and Jiang A Q 2018 Nat. Mater. 17 49
[3] Seidel J, Martin L W, He Q, Zhang Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
[4] Farokhipoor S and Noheda B 2011 Phys. Rev. Lett. 107 127601
[5] Crassous A, Sluka T, Tagantsev A K and Setter N 2015 Nat. Nanotechnol. 10 614
[6] Wu W, Horibe Y, Lee N, Cheong S W and Guest J R 2012 Phys. Rev. Lett. 108 077203
[7] Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, Mostovoy M, Spaldin N A, Ramesh R and Fiebig M 2012 Nat. Mater. 11 284
[8] Schröder M, Hau M A, Thiessen A, Soergel E, Woike T and Eng L M 2012 Adv. Funct. Mater. 22 3936
[9] Godau C, Kämpfe T, Thiessen A, Eng L M and Haußmann A 2017 ACS Nano 11 4816
[10] Werner C S, Herr S J, Buse K, Sturman B, Soergel E, Razzaghi C and Breunig I 2017 Sci. Rep. 7 9862
[11] Sluka T, Tagantsev A K, Bednyakov P and Setter N 2013 Nat. Commun. 4 1808
[12] Volk T R, Gainutdinov R V and Zhang H H 2017 Appl. Phys. Lett. 110 132905
[13] Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Zhang J and Nan C W 2018 Nat. Nanotechnol. 13 947
[14] Bai Z L, Cheng X X, Chen D F, Zhang D W, Chen L Q, Scott J F, Hwang C S and Jiang A Q 2018 Adv. Funct. Mater. 28 1801725
[15] Stolichnov I, Iwanowska M, Colla E, Ziegler B, Gaponenko I, Paruch P, Huijben M, Rijnders G and Setter N 2014 Appl. Phys. Lett. 104 132902
[16] Rojac T, Bencan A, Drazic G, Sakamoto N, Ursic H, Jancar B, Tavcar G, Makarovic M, Walker J, Malic B and Damjanovic D 2017 Nat. Mater. 16 322
[17] Liu L, Xu K, Li Q, Daniels J, Zhou H, Li J, Zhu J, Seidel J and Li J F 2020 Adv. Funct. Mater. 2005876
[18] Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F and Hwang C S 2020 Nat. Mater. 19 1188
[19] Wang C, Jiang J, Chai X, Lian J, Hu X and Jiang A Q 2020 ACS Appl. Mater. & Interfaces 12 44998
[20] Yoon K J, Kim G H, Yoo S, Bae W, Yoon J H, Park T H, Kwon D E, Kwon Y J, Kim H J and Kim Y M 2017 Adv. Electron. Mater. 3 1700152
[21] Wang G, Lauchner A C, Lin J, Natelson D, Palem K V and Tour J M 2013 Adv. Mater. 25 4789
[22] Chai X J, Jiang J, Zhang Q H, Hou X, Meng F Q, Wang J, Gu L, Zhang D W and Jiang A Q 2020 Nat. Commun. 11 2811
[23] Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F and Yang J J 2020 Nat. Rev. Mater. 5 173
[24] R, D S, Kawayama I, Mavani K, Takahashi K, Murakami H and Tonouchi M 2009 Adv. Mater. 21 2881
[25] Tselev A, Yu P, Cao Y, Dedon L R, Martin L W, Kalinin S V and Maksymovych P 2016 Nat. Commun. 7 11630
Viewed
Full text


Abstract