CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature Dependent In-Plane Anisotropic Magnetoresistance in HfTe$_{5}$ Thin Layers |
Peng Wang1,2†, Tao Hou1†, Fangdong Tang2,3, Peipei Wang2, Yulei Han1, Yafei Ren1, Hualing Zeng1*, Liyuan Zhang2*, and Zhenhua Qiao1* |
1International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Centre of Quantum Information and Quantum Physics, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China 2Department of Physics, Southern University of Science and Technology, and Shenzhen Institute for Quantum Science and Engineering, Shenzhen 518055, China 3Solid State Nanophysics, Max Plank Institute for Solid State Research, Stuttgart, Germany
|
|
Cite this article: |
Peng Wang, Tao Hou, Fangdong Tang et al 2021 Chin. Phys. Lett. 38 017201 |
|
|
Abstract We report the observation of in-plane anisotropic magnetoresistance and planar Hall effect in non-magnetic HfTe$_{5}$ thin layers. The observed anisotropic magnetoresistance as well as its sign is strongly dependent on the critical resistivity anomaly temperature $T_{\rm p}$. Below $T_{\rm p}$, the anisotropic magnetoresistance is negative with large negative magnetoresistance. When the in-plane magnetic field is perpendicular to the current, the negative longitudinal magnetoresistance reaches its maximum. The negative longitudinal magnetoresistance effect in HfTe$_{5}$ thin layers is dramatically different from that induced by the chiral anomaly as observed in Weyl and Dirac semimetals. One potential underlying origin may be attributed to the reduced spin scattering, which arises from the in-plane magnetic field driven coupling between the top and bottom surface states. Our findings provide valuable insights for the anisotropic magnetoresistance effect in topological electronic systems and the device potential of HfTe$_{5}$ in spintronics and quantum sensing.
|
|
Received: 18 October 2020
Published: 06 January 2021
|
|
|
Fund: Supported by the National Key R&D Program (Grant Nos. 2017YFB0405703, 2017YFA0205004, and 2018YFA0306600), and the National Natural Science Foundation of China (Grant Nos. 11974327, 11474265, 11674295, 11674024, and 11874193), the Fundamental Research Funds for the Central Universities (Grant Nos. WK2030020032 and WK2340000082), Anhui Initiative in Quantum Information Technologies, and the Shenzhen Fundamental Subject Research Program (Grant No. JCYJ20170817110751776). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. |
|
|
[1] | Shon W, Rhyee J S, Jin Y and Kim S J 2019 Phys. Rev. B 100 24433 |
[2] | Liu Z H, Liu H, Zhang X X, Zhang X K, Xiao J Q, Zhu Z Y, Dai X F, Liu G D, Chen J L and Wu G H 2005 Appl. Phys. Lett. 86 182507 |
[3] | Hanasaki N, Tajima H, Matsuda M, Naito T and Inabe T 2000 Phys. Rev. B 62 5839 |
[4] | Philippi-Kobs A, Farhadi A, Matheis L, Lott D, Chuvilin A and Oepen H P 2019 Phys. Rev. Lett. 123 137201 |
[5] | Kriegner D, Výborný K, Olejník K, Reichlová H, Novák V, Marti X, Gazquez J, Saidl V, Němec P, Volobuev V V, Springholz G, Holý V and Jungwirth T 2016 Nat. Commun. 7 11623 |
[6] | Mcguire T R and Potter R I 1975 IEEE Trans. Magn. 11 1018 |
[7] | Thomsom W 1857 Proc. R. Soc. London 8 550 |
[8] | Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137 |
[9] | Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 |
[10] | Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z and O 2015 Phys. Rev. X 5 031023 |
[11] | Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550 |
[12] | Wang H, Li C K, Liu H, Yan J, Wang J, Liu J, Lin Z, Li Y, Wang Y, Li L, Mandrus D, Xie X C, Feng J and Wang J 2016 Phys. Rev. B 93 165127 |
[13] | Hansson M, Brattås L, Kjekshus A, Enzell C R, Enzell C R and Swahn C G 1973 Acta Chem. Scand. 27 2455 |
[14] | Fan Z, Liang Q F, Chen Y B, Yao S H and Zhou J 2017 Sci. Rep. 7 1 |
[15] | Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X and Chen G F 2017 Chin. Phys. Lett. 34 037102 |
[16] | Sulaev A, Zeng M, Shen S Q, Cho S K, Zhu W G, Feng Y P, Eremeev S V, Kawazoe Y, Shen L and Wang L 2015 Nano Lett. 15 2061 |
[17] | Zhang M, Wang H, Mu K, Wang P, Niu W, Zhang S, Xiao G, Chen Y, Tong T, Fu D, Wang X, Zhang H, Song F, Miao F, Sun Z, Xia Z, Wang X, Xu Y, Wang B, Xing D and Zhang R 2018 ACS Nano 12 1537 |
[18] | dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M and Hassinger E 2016 New J. Phys. 18 085006 |
[19] | Xu Y, Jiang G, Miotkowski I, Biswas R R and Chen Y P 2019 Phys. Rev. Lett. 123 207701 |
[20] | Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A and Ando Y 2017 Nat. Commun. 8 1340 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|