CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes |
Yequan Chen1, Ruxin Liu1, Yongda Chen1, Xiao Yuan1, Jiai Ning1, Chunchen Zhang2, Liming Chen1, Peng Wang2, Liang He1, Rong Zhang1, Yongbing Xu1*, and Xuefeng Wang1* |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Yequan Chen, Ruxin Liu, Yongda Chen et al 2021 Chin. Phys. Lett. 38 017101 |
|
|
Abstract We report a universal transfer methodology for producing artificial heterostructures of large-area freestanding single-crystalline WTe$_{2}$ membranes on diverse target substrates. The transferred WTe$_{2}$ membranes exhibit a nondestructive structure with a carrier mobility comparable to that of as-grown films ($\sim $179–1055 cm$^{2}$$\cdot$V$^{-1}$$\cdot$s$^{-1}$). Furthermore, the transferred membranes show distinct Shubnikov–de Haas quantum oscillations as well as weak localization/weak anti-localization. These results provide a new approach to the development of atom manufacturing and devices based on atomic-level, large-area topological quantum films.
|
|
Received: 02 November 2020
Published: 06 January 2021
|
|
PACS: |
71.20.Be
|
(Transition metals and alloys)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. 11874203, 61822403, U1732159, 11774160, and 61427812), and the Fundamental Research Funds for the Central Universities (Grant No. 021014380080). |
|
|
[1] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 |
[2] | Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 |
[3] | Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G and Feng D L 2015 Phys. Rev. Lett. 115 166601 |
[4] | Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L and Zhao Z 2015 Nat. Commun. 6 7804 |
[5] | Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805 |
[6] | Tang S J, Zhang C F, Wong D, Pedramrazi Z, Tsai H, Jia C J, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D H, Moore R G, Hwang C, Hwang C, Hussain Z, Chen Y L, Ugeda M M, Liu Z, Xie X M, Devereaux T P, Crommie M F, Mo S and Shen Z X 2017 Nat. Phys. 13 683 |
[7] | Wu S F, Fatemi V, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 |
[8] | Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 |
[9] | Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337 |
[10] | Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324 |
[11] | Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S, Liu Y, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z and Kwon S Y 2020 Nat. Electron. 3 207 |
[12] | Wang A Q, Ye X G, Yu D P and Liao Z M 2020 ACS Nano 14 3755 |
[13] | Wang L M, Zou X M, Lin J, Jiang J Y, Liu Y, Liu X Q, Zhao X, Liu Y F, Ho J C and Liao L 2019 ACS Nano 13 4804 |
[14] | Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 |
[15] | Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 |
[16] | Yuan X, Cheng P H, Zhang L Q, Zhang C, Wang J Y, Liu Y W, Sun Q Q, Zhou P, Zhang D W, Hu Z G, Wan X G, Yan H G, Li Z Q and Xiu F X 2017 Nano Lett. 17 2211 |
[17] | Zhang M H, Wang X F, Song F Q and Zhang R 2018 Chin. Phys. B 27 097307 |
[18] | Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H Z and Xiu F X 2017 Nano Lett. 17 878 |
[19] | Zhou J, Liu F, Lin J, Huang X, Xia J, Zhang B, Zeng Q, Wang H, Zhu C, Niu L, Wang X, Fu W, Yu P, Chang T R, Hsu C H, Wu D, Jeng H T, Huang Y, Lin H, Shen Z, Yang C, Lu L, Suenaga K, Zhou W, Pantelides S T, Liu G and Liu Z 2017 Adv. Mater. 29 1603471 |
[20] | Fan S D, Vu Q A, Tran M D, Adhikari S and Lee Y H 2020 2D Mater. 7 022005 |
[21] | Hong S S, Gu M Q, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M and Hwang H Y 2020 Science 368 71 |
[22] | Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B and Kim J 2020 Nature 578 75 |
[23] | Yun S J, Chae S H, Kim H, C P J, Park J H, Han G H, Lee J S, Kim S M, M O H, Seok J, Jeong M S, Kim K K and Lee Y H 2015 ACS Nano 9 5510 |
[24] | Gao Y, Liu Z, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z, Ma X L, Peng L M, Cheng H M and Ren W 2015 Nat. Commun. 6 8569 |
[25] | Gao M, Zhang M H, Niu W, Chen Y Q, Gu M, Wang H Y, Song F Q, Wang P, Yan S C, Wang F Q, Wang X R, Wang X F, Xu Y B and Zhang R 2017 Appl. Phys. Lett. 111 031906 |
[26] | Chen Y Q, Chen Y D, Ning J A, Chen L M, Zhuang W Z, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104 |
[27] | Tu N H, Tanabe Y, Satake Y, Huynh K K, Le P H, Matsushita S Y and Tanigaki K 2017 Nano Lett. 17 2354 |
[28] | Kong W D, F W S, Richard P, Lian C S, T W J, Yang C L, Shi Y G and Ding H 2015 Appl. Phys. Lett. 106 081906 |
[29] | Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202 |
[30] | Niu W, Gao M, Wang X F, Song F Q, Du J, Wang X R, Xu Y B and Zhang R 2016 Sci. Rep. 6 26081 |
[31] | Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W and Zhang J D 2015 Phys. Rev. B 92 125123 |
[32] | Ziese M 2003 Phys. Rev. B 68 132411 |
[33] | Xu Y, Zhang J C, Cao G X, Jing C and Cao S X 2006 Phys. Rev. B 73 224410 |
[34] | Knap W, Skierbiszewski C, Zduniak A, Litwin-Staszewska E and Bertho D 1996 Phys. Rev. B 53 3912 |
[35] | Zhang K, Pan H Y, Wei Z X, Zhang M H, Song F Q, Wang X F and Zhang R 2017 Chin. Phys. B 26 096101 |
[36] | Zhang M H, Li Y, Song F Q, Wang X F and Zhang R 2017 Chin. Phys. B 26 127305 |
[37] | Fatemi V, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2017 Phys. Rev. B 95 041410 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|