Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 016802    DOI: 10.1088/0256-307X/38/1/016802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Dynamic Crossover in Metallic Glass Nanoparticles
Shan Zhang1, Weihua Wang2, and Pengfei Guan1*
1Beijing Computational Science Research Center, Beijing 100193, China
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Shan Zhang, Weihua Wang, and Pengfei Guan 2021 Chin. Phys. Lett. 38 016802
Download: PDF(2203KB)   PDF(mobile)(3163KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the dynamic crossover behavior in metallic glass nanoparticles (MGNs) with the size reduction based on the extensive molecular dynamics (MD) simulations combined with the activation-relaxation technique (ART). The fragile-to-strong transition of dynamics can be achieved by just modulating the characteristic size of MGNs. It can be attributed to the abnormal fast surface dynamics enhanced by the surface curvature. By determining the potential energy surface, we reveal the hierarchy-to-flat transition of potential energy landscape (PEL) in MGNs, and demonstrate the intrinsic flat potential landscape feature of the MGN with size smaller than a critical size. Our results provide an important piece of the puzzle about the size-modulated potential energy landscape and shed some lights on the unique properties of MGs in nanoscale.
Received: 09 December 2020      Published: 29 December 2020
PACS:  60.70.pe  
  64.70.ph (Nonmetallic glasses (silicates, oxides, selenides, etc.))  
  68.35.Ja (Surface and interface dynamics and vibrations)  
Fund: Supported by the Science Challenge Project (Grant No. TZ2018004), and the National Natural Science Foundation of China (Grant No. U1930402). S.Z. and P.G. acknowledge the computational support from the Beijing Computational Science Research Center (CSRC).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/016802       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/016802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shan Zhang
Weihua Wang
and Pengfei Guan
[1] Chen D Z, Jang D, Guan K M, An Q, Goddard W A and Greer J R 2013 Nano Lett. 13 4462
[2] Jang D and Greer J R 2010 Nat. Mater. 9 215
[3] Volkert C A, Donohue A and Spaepen F 2008 J. Appl. Phys. 103 083539
[4] Lee S W, Jafary-Zadeh M, Chen D Z, Zhang Y W and Greer J R 2015 Nano Lett. 15 5673
[5] Brower W E, Matyjaszczyk M S, Pettit T L and Smith G V 1983 Nature 301 497
[6] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U and Eckert J 2013 Mater. Today 16 37
[7] Shen Y, Li Y, Chen C and Tsai H J M 2017 Mater. & Des. 117 213
[8] Zberg B, Uggowitzer P J and Löffler J F 2009 Nat. Mater. 8 887
[9] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[10] Van Der Scheer P, Van De Laar T, Van Der Gucht J, Vlassopoulos D and Sprakel J 2017 ACS Nano 11 6755
[11] Li Q J, Xu B, Hara S, Li J and Ma E 2018 Acta Mater. 145 19
[12] Inoue A and Nishiyama N 2007 MRS Bull. 32 651
[13] Schroers J, Kumar G, Hodges T, Chan S and Kyriakides T 2009 JOM 61 21
[14] Dong J, Feng Y H, Huan Y, Yi J, Wang W H, Bai H Y and Sun B A 2020 Chin. Phys. Lett. 37 017103
[15] Jang D, Gross C T and Greer J R 2011 Int. J. Plast. 27 858
[16] Şopu D, Foroughi A, Stoica M and Eckert J 2016 Nano Lett. 16 4467
[17] Stevenson J D and Wolynes P G 2008 J. Chem. Phys. 129 234514
[18] Kumar G, Desai A and Schroers J 2011 Adv. Mater. 23 461
[19] Chen N, Frank R, Asao N, Louzguine-Luzgin D V, Sharma P, Wang J Q, Xie G Q, Ishikawa Y, Hatakeyama N, Lin Y C, Esashi M, Yamamoto Y and Inoue A 2011 Acta Mater. 59 6433
[20] Witte R, Feng T, Fang J X, Fischer A, Ghafari M, Kruk R, Brand R A, Wang D, Hahn H and Gleiter H 2013 Appl. Phys. Lett. 103 073106
[21] Ketov S V, Shi X, Xie G, Kumashiro R, Churyumov A Y, Bazlov A I, Chen N, Ishikawa Y, Asao N, Wu H and Louzguine-Luzgin D V 2015 Sci. Rep. 5 7799
[22] Zhao M, Abe K, Yamaura S I, Yamamoto Y and Asao N 2014 Chem. Mater. 26 1056
[23] Chen N, Wang D, Guan P F, Bai H Y, Wang W H, Zhang Z J, Hahn H and Gleiter H 2019 Appl. Phys. Lett. 114 043103
[24] Cao C R, Huang K Q, Shi J A, Zheng D N, Wang W H, Gu L and Bai H Y 2019 Nat. Commun. 10 1966
[25] An S, Su R, Zhao S, Liu J, Liu B and Guan P 2018 Phys. Rev. B 98 134101
[26] Tian Y, Jiao W, Liu P, Song S, Lu Z, Hirata A and Chen M 2019 Nat. Commun. 10 5249
[27] Li Y Z, Sun Y T, Lu Z, Li M Z, Bai H Y and Wang W H 2017 J. Chem. Phys. 146 224502
[28] Zhang P, Maldonis J J, Liu Z, Schroers J and Voyles P M 2018 Nat. Commun. 9 1129
[29] Qi W and Bowles R K 2016 ACS Nano 10 3416
[30] Sun D, Shang C, Liu Z and Gong X 2017 Chin. Phys. Lett. 34 026402
[31] Sun D Y and Gong X G 2020 New J. Phys. 22 103020
[32] Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X and Wang W H 2017 Phys. Rev. Lett. 118 016101
[33] Sun G, Saw S, Douglass I and Harrowell P 2017 Phys. Rev. Lett. 119 245501
[34] Bi Q L, Lü Y J and Wang W H 2018 Phys. Rev. Lett. 120 155501
[35] Mousseau N, Béland L K, Brommer P, Joly J F, El-Mellouhi F, Machado-Charry E, Marinica M C and Pochet P 2012 J. At. Mol. Opt. Phys. 2012 925278
[36] Plimpton S 1995 J. Comput. Phys. 117 1
[37] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[38] Mendelev M I, Sordelet D J and Kramer M J 2007 J. Appl. Phys. 102 043501
[39] Kob W and Andersen H C 1995 Phys. Rev. E 52 4134
[40] Rault J 2000 J. Non-Cryst. Solids 271 177
[41] Angell C A 1995 Science 267 1924
[42] Angell C A 1988 J. Phys. Chem. Solids 49 863
[43] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[44] Wang Y J, Du J P, Shinzato S, Dai L H and Ogata S 2018 Acta Mater. 157 165
[45] Wang B, Wang L J, Shang B S, Gao X Q, Yang Y, Bai H Y, Pan M X, Wang W H and Guan P F 2020 Acta Mater. 195 611
Viewed
Full text


Abstract