CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors |
Bojing Lu1, Rumin Liu1, Siqin Li1, Rongkai Lu1, Lingxiang Chen2*, Zhizhen Ye1,2, and Jianguo Lu1,2* |
1State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 2Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
|
|
Cite this article: |
Bojing Lu, Rumin Liu, Siqin Li et al 2020 Chin. Phys. Lett. 37 098501 |
|
|
Abstract We examine an amorphous oxide semiconductor (AOS) of ZnRhCuO. The $a$-ZnRhCuO films are deposited at room temperature, having a high amorphous quality with smooth surface, uniform thickness and evenly distributed elements, as well as a high visible transmittance above 87% with a wide bandgap of 3.12 eV. Using $a$-ZnRhCuO films as active layers, thin-film transistors (TFTs) and gas sensors are fabricated. The TFT behaviors demonstrate the p-type nature of $a$-ZnRhCuO channel, with an on-to-off current ratio of $\sim$$1\times 10^{3}$ and field-effect mobility of 0.079 cm$^{2}$V$^{-1}$s$^{-1}$. The behaviors of gas sensors also prove that the $a$-ZnRhCuO films are of p-type conductivity. Our achievements relating to p-type $a$-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.
|
|
Received: 16 May 2020
Published: 01 September 2020
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
73.61.Jc
|
(Amorphous semiconductors; glasses)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51741209), and the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LR16F040001 and LGG19F040005). |
|
|
[1] | Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 |
[2] | Wager J F, Yeh B, Hoffman R L and Keszler D A 2014 Curr. Opin. Solid State Mater. Sci. 18 53 |
[3] | Lu B J, Lu Y D, Zhu H J, Zhang J Q, Yue S L, Li S Q, Zhuge F, Ye Z Z and Lu J G 2019 Mater. Lett. 249 169 |
[4] | Jiang Q J, Wu C J, Feng L S, Gong L, Ye Z Z and Lu J G 2015 Appl. Surf. Sci. 357 1536 |
[5] | Yue S L, Lu J G, Lu R K, Li S Q, Lu B J, Zhao Y, Li X F, Zhang J H and Ye Z Z 2019 IEEE Trans. Electron Devices 66 2960 |
[6] | Honda W, Harada S, Ishida S, Arie T, Akita S and Takei K 2015 Adv. Mater. 27 4674 |
[7] | Feng L S, Yu G Y, Li X F, Zhang J H, Ye Z Z and Lu J G 2017 IEEE Trans. Electron Devices 64 206 |
[8] | Jiang Q J, Feng L S, Wu C J, Sun R J, Li X F, Lu B, Ye Z Z and Lu J G 2015 Appl. Phys. Lett. 106 053503 |
[9] | Wang Z W, Nayak P K, Caraveo-Fresca J A S and Alshareef H N 2016 Adv. Mater. 28 3831 |
[10] | Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113 |
[11] | Fortunato E, Barros R, Barquinha P, Figueiredo V, Park S, Hwang C and Martins R 2010 Appl. Phys. Lett. 97 052105 |
[12] | Jiang J, Wang X, Zhang Q, Li J and Zhang X X 2013 Phys. Chem. Chem. Phys. 15 6875 |
[13] | Park I J, Jeong C Y, U M, Song S h, Cho I T, Lee J H, Cho E S and Kwon H I 2013 IEEE Electron Device Lett. 34 647 |
[14] | Matsuzaki K, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 202107 |
[15] | Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939 |
[16] | Kamiya T, Narushima S, Mizoguchi S, Shimizu K, Ueda K, Ohta H, Hirano M and Hosono H 2005 Adv. Funct. Mater. 15 968 |
[17] | Kim S, Cianfrone J A, Sadik P, Kim K W, Ivill M and Norton D P 2010 J. Appl. Phys. 107 103538 |
[18] | Li J, Kaneda T, Tokumitsu E, Koyano M, Mitani T and Shimoda T 2012 Appl. Phys. Lett. 101 052102 |
[19] | Lu J G, Ye Z Z, Huang J Y, Wang L and Zhao B H 2003 Appl. Surf. Sci. 207 295 |
[20] | Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S and Lee S T 2008 Nano Lett. 8 2591 |
[21] | Liu W, Xiu F, Sun K, Xie Y, Wang K, Wang Y, Zou J, Yang Z and Liu J 2010 J. Am. Chem. Soc. 132 2498 |
[22] | Lee J, Cha S, Kim J, Nam H, Lee S, Ko W, Wang K, Park J and Hong J 2011 Adv. Mater. 23 4183 |
[23] | Wang F, Seo J, Bayerl D, Shi J, Mi H, Ma Z, Zhao D, Shuai Y, Zhou W and Wang X 2011 Nanotechnology 22 225602 |
[24] | Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T and Hosono H 2003 Adv. Mater. 15 1409 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|