Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097802    DOI: 10.1088/0256-307X/37/9/097802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se
Qiong Wu1,2, Huaxue Zhou1, Yanling Wu1, Lili Hu1, Shunli Ni1,2, Yichao Tian1, Fei Sun1,2, Fang Zhou1,2,3, Xiaoli Dong1,2,3, Zhongxian Zhao1,2,3, and Jimin Zhao1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Qiong Wu, Huaxue Zhou, Yanling Wu et al  2020 Chin. Phys. Lett. 37 097802
Download: PDF(3320KB)   PDF(mobile)(8014KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Distinctive superconducting behaviors between bulk and monolayer FeSe make it challenging to obtain a unified picture of all FeSe-based superconductors. We investigate the ultrafast quasiparticle (QP) dynamics of an intercalated superconductor (Li$_{1-x}$Fe$_{x}$)OHFe$_{1-y}$Se, which is a bulk crystal but shares a similar electronic structure with single-layer FeSe on SrTiO$_{3}$. We obtain the electron-phonon coupling (EPC) constant $\lambda_{{A}_{\rm 1g}}$ ($0.22 \pm 0.04$), which well bridges that of bulk FeSe crystal and single-layer FeSe on SrTiO$_{3}$. Significantly, we find that such a positive correlation between $\lambda_{{A}_{\rm 1g}}$ and superconducting $T_{\rm c}$ holds among all known FeSe-based superconductors, even in line with reported FeAs-based superconductors. Our observation indicates possible universal role of EPC in the superconductivity of all known categories of iron-based superconductors, which is a critical step towards achieving a unified superconducting mechanism for all iron-based superconductors.
Received: 18 July 2020      Published: 23 August 2020
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.47.jg (Time resolved reflection spectroscopy)  
  71.38.-k (Polarons and electron-phonon interactions)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303603 and 2016YFA0300300), the National Natural Science Foundation of China (Grant Nos. 11574383, 11774408, and 11574370), the Frontier Program of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH001), the Strategic Priority Research Program of CAS (Grant No. XDB30000000), the Beijing Natural Science Foundation (Grant No. 4191003), the International Partnership Program of Chinese Academy of Sciences (Grant No. GJHZ1826), and CAS Interdisciplinary Innovation Team.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097802       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiong Wu
Huaxue Zhou
Yanling Wu
Lili Hu
Shunli Ni
Yichao Tian
Fei Sun
Fang Zhou
Xiaoli Dong
Zhongxian Zhao
and Jimin Zhao
[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[4] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[5] Luo C W, Wu I H, Cheng P C, Lin J Y, Wu K H, Uen T M, Juang J Y, Kobayashi T, Chareev D A, Volkova O S and Vasiliev A N 2012 Phys. Rev. Lett. 108 257006
[6] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K and Zhao J M 2016 Phys. Rev. Lett. 116 107001
[7] Gerber S, Yang S L, Zhu D, Soifer H, Sobota J A, Rebec S, Lee J J, Jia T, Moritz B, Jia C, Gauthier A, Li Y, Leuenberger D, Zhang Y, Chaix L, Li W, Jang H, Lee J S, Yi M, Dakovski G L, Song S, Glownia J M, Nelson S, Kim K W, Chuang Y D, Hussain Z, Moore R G, Devereaux T P, Lee W S, Kirchmann P S and Shen Z X 2017 Science 357 71
[8] Ren Y H, Gong Y, Nosach T, Li J, Tu J J, Li L J, Cao G H and Xu Z A 2012 J. Appl. Phys. 111 07E134
[9] Mansart B, Boschetto D, Savoia A, Rullier-Albenque F, Bouquet F, Papalazarou E, Forget A, Colson D, Rousse A and Marsi M 2010 Phys. Rev. B 82 024513
[10] Mertelj T, Kabanov V V, Gadermaier C, Zhigadlo N D, Katrych S, Karpinski J and Mihailovic D 2009 Phys. Rev. Lett. 102 117002
[11] Torchinsky D H, Chen G F, Luo J L, Wang N L and Gedik N 2010 Phys. Rev. Lett. 105 027005
[12] Torchinsky D H, McIver J W, Hsieh D, Chen G F, Luo J L, Wang N L and Gedik N 2011 Phys. Rev. B 84 104518
[13] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515
[14] Sun H L, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X D, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958
[15] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[16] Zhao L, Liang A J, Yuan D N, Hu Y, Liu D F, Huang J W, He S L, Shen B, Xu Y, Liu X, Yu L, Liu G D, Zhou H X, Huang Y L, Dong X L, Zhou F, Liu K, Lu Z Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2016 Nat. Commun. 7 10608
[17] Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z and Feng D L 2015 Phys. Rev. B 92 060504
[18] Dong X L, Zhou H X, Yang H X, Yuan J, Jin K, Zhou F, Yuan D N, Wei L L, Li J Q, Wang X Q, Zhang G M and Zhao Z X 2015 J. Am. Chem. Soc. 137 66
[19] Hinton J P, Thewalt E, Alpichshev Z, Mahmood F, Koralek J D, Chan M K, Veit M J, Dorow C J, Barisic N, Kemper A F, Bonn D A, Hardy W N, Liang R X, Gedik N, Greven M, Lanzara A and Orenstein J 2016 Sci. Rep. 6 23610
[20] Demsar J, Podobnik B, Kabanov V V, Wolf T and Mihailovic D 1999 Phys. Rev. Lett. 82 4918
[21] Wu Y L, Yin X, Hasaien J, Ding Y and Zhao J M 2020 Chin. Phys. Lett. 37 047801
[22] Rothwarf A and Taylor B N 1967 Phys. Rev. Lett. 19 27
[23] Kabanov V V, Demsar J and Mihailovic D 2005 Phys. Rev. Lett. 95 147002
[24] Allen P B 1987 Phys. Rev. Lett. 59 1460
[25] Boschetto D, Gamaly E G, Rode A V, Luther-Davies B, Glijer D, Garl T, Albert O, Rousse A and Etchepare J 2008 Phys. Rev. Lett. 100 027404
[26] Brorson S D, Kazeroonian A, Moodera J S, Face D W, Cheng T K, Ippen E P, Dresselhaus M S and Dresselhaus G 1990 Phys. Rev. Lett. 64 2172
[27] Wu Q, Sun F, Zhang Q Y, Zhao L X, Chen G F and Zhao J M 2020 Phys. Rev. Mater. 4 064201
[28] Aku-Leh C, Zhao Jimin, Merlin R, Menendez J and Cardona M 2005 Phys. Rev. B 71 205211
[29] Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G and Zhao J 2019 Phys. Rev. B 99 094307
[30] Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P and Zhao Jimin 2017 Phys. Rev. B 95 235108
[31] Zhao Jimin, Bragas A V, Merlin R and Lockwood D J 2006 Phys. Rev. B 73 184434
[32] Yu B H, Tian Z Y, Sun F, Peets D C, Bai X D, Feng D L and Zhao J M 2020 Opt. Express 28 15855
[33] similar low-lying mode is also considered: Carbone F A, Yang D S, Giannini E and Zewail A H 2008 Proc. Natl. Acad. Sci. USA 105 20161
[34] Rettig L, Cortes R, Jeevan H S, Gegenwart P, Wolf T, Fink J and Bovensiepen U 2013 New J. Phys. 15 083023
[35] Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[36] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D and Vasiliev A 2013 Phys. Rev. B 87 144508
[37] Jishi R A and Alyahyaei H M 2010 Adv. Conden. Matter Phys. 2010 804343
[38] Um Y J, Bang Y, Min B H, Kwon Y S and Le Tacon M 2014 Phys. Rev. B 89 184510
[39] Li J and Huang G Q 2013 Solid State Commun. 159 45
[40] Boeri L, Dolgov O V and Golubov A A 2008 Phys. Rev. Lett. 101 026403
[41] Hadjiev V G, Iliev M N, Sasmal K, Sun Y Y and Chu C W 2008 Phys. Rev. B 77 220505
[42] Yndurain F 2011 Europhys. Lett. 94 37001
[43] Miao R D, Bai Z, Yang J, Chen X, Cai D, Fan C H, Wang L, Zhang Q L and Chen L A 2013 Solid State Commun. 154 11
[44] Choi K Y, Wulferding D, Lemmens P, Ni N, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 212503
[45] Um Y J, Park J T, Min B H, Song Y J, Kwon Y S, Keimer B and Le Tacon M 2012 Phys. Rev. B 85 012501
[46] Bazhirov T and Cohen M L 2012 Phys. Rev. B 86 134517
[47] Mittal R, Gupta M K, Chaplot S L, Zbiri M, Rols S, Schober H, Su Y, Brueckel T and Wolf T 2013 Phys. Rev. B 87 184502
[48] Boeri L, Calandra M, Mazin I I, Dolgov O V and Mauri F 2010 Phys. Rev. B 82 020506
[49] Rahlenbeck M, Sun G L, Sun D L, Lin C T, Keimer B and Ulrich C 2009 Phys. Rev. B 80 064509
[50] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[51] Mcmillan W L 1968 Phys. Rev. 167 331
[52] Zhang S Y, Guan J Q, Jia X, Liu B, Wang W H, Li F S, Wang L L, Ma X C, Xue Q K, Zhang J D, Plummer E W, Zhu X T and Guo J D 2016 Phys. Rev. B 94 081116
[53] Avigo I, Cortes R, Rettig L, Thirupathaiah S, Jeevan H S, Gegenwart P, Wolf T, Ligges M, Wolf M, Fink J and Bovensiepen U 2013 J. Phys.: Condens. Matter 25 094003
[54] Parker D R, Pitcher M J, Baker P J, Franke I, Lancaster T, Blundell S J and Clarke S J 2009 Chem. Commun. 16 2189
[55] Katayama N, Ji S D, Louca D, Lee S, Fujita M, Sato T J, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K and Tranquada J M 2010 J. Phys. Soc. Jpn. 79 113702
[56] Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W and Guloy A M 2008 Phys. Rev. B 78 060505
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 097802
[2] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$[J]. Chin. Phys. Lett., 2020, 37(6): 097802
[3] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$ *[J]. Chin. Phys. Lett., 0, (): 097802
[4] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 097802
[5] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 097802
[6] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 097802
[7] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 097802
[8] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 097802
[9] LIU Yu-Zhu, KNOPP Gregor, XIAO Shao-Rong, GERBER Thomas. Ultrafast Imaging of Electronic Relaxation in Ortho-xylene: New Features from Fragmentation-Ion Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(12): 097802
[10] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 097802
[11] CHEN Zhi, WEN Qi-Ye, DONG Kai, SUN Dan-Dan, QIU Dong-Hong, ZHANG Huai-Wu. Ultrafast and Broadband Terahertz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films[J]. Chin. Phys. Lett., 2013, 30(1): 097802
[12] CHEN Tao, SI Jin-Hai, LIU Xiang, CHEN Feng, HOU Xun. The Influence of Coherent Transient Energy Transfer on Femtosecond Time-Resolved Z-Scan Measurements[J]. Chin. Phys. Lett., 2012, 29(10): 097802
[13] YAN Li-He, JIA Sen, SI Jin-Hai, MATSUO Shigeki, CHEN Feng, HOU Xun. Application of Optical Kerr Gate with SrTiO3 Crystal in Acquisition of Gated Spectra from a Supercontinuum[J]. Chin. Phys. Lett., 2012, 29(7): 097802
[14] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 097802
[15] DING Jin-Liang, WANG Yao-Chuan, ZHOU Hui, CHEN Qiang, QIAN Shi-Xiong**, FENG Zhe-Chuan, LU Wei-Jie . Nonlinear Optical Properties and Ultrafast Dynamics of Undoped and Doped Bulk SiC[J]. Chin. Phys. Lett., 2010, 27(12): 097802
Viewed
Full text


Abstract