CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals |
Hai Zi1,2, Ling-Xiao Zhao2, Xing-Yuan Hou2, Lei Shan2, Zhian Ren2, Gen-Fu Chen2, and Cong Ren1,2* |
1School of Physics and Astronomy, Yunnan University, Kunming 650500, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
|
|
Cite this article: |
Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou et al 2020 Chin. Phys. Lett. 37 097403 |
|
|
Abstract We develop an experimental tool to investigate the order parameter of superconductors by combining point-contact spectroscopy measurement with high-pressure technique. It is demonstrated for the first time that planar point-contact spectroscopy measurement on noncentrosymmetric superconducting PbTaSe$_2$ single crystals is systematically subjected to hydrostatic pressures up to 12.1 kbar. Under such a high pressure, the normal-state contact resistance is sensitive to the applied pressure, reflecting the underlying variation of contact transparency upon pressures. In a superconducting state, the pressure dependence of the energy gap $\varDelta_0$ and the critical temperature $T_{\rm c}$ for gap opening/closing are extracted based on a generalized Blond–Tinkham–Klapwijk model. The gap ratio $2\varDelta_0/k_{_{\rm B}}T_{\rm c}$ indicates a crossover from weak coupling to strong coupling in electron pairing strength upon pressure for PbTaSe$_2$. Our experimental results show the accessibility and validity of high-pressure point-contact spectroscopy, offering rich information about high-pressure superconductivity.
|
|
Received: 20 July 2020
Published: 24 August 2020
|
|
PACS: |
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
|
Fund: Supported by the National Science Foundation of China (Grant Nos. 11574373 and 11774303), and the Joint Fund of Yunnan Provincial Science and Technology Department (Grant No. 2019FY003008). |
|
|
[1] | Mao H K, Chen X J, Ding Y, Li B and Wang L 2018 Rev. Mod. Phys. 90 015007 |
| Schilling J S 2007 High-Pressure Effects in Handbook of High-Temperature Superconductivity ed Schrieffer J R and Brooks S (Berlin: Springer) |
[2] | Lorenz B and Chu C W 2005 High Pressure Effect on Superconductivity in Frontiers in Superconducting Materials ed Narlikar A V (Berlin: Springer-Verlag) |
[3] | Sun L, Chen X J, Guo J, Gao P et al. 2012 Nature 483 67 |
| Alireza P L, Chris Ko Y T, Gillett J, Petrone M et al. 2009 J. Phys.: Condens. Matter 21 012208 |
[4] | Chu C W and Lorenz B 2009 Physica C 469 385 |
[5] | Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H et al. 2020 Chin. Phys. Lett. 37 047102 |
[6] | Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401 |
| Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y et al. 2019 Chin. Phys. Lett. 36 087401 |
[7] | Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186 |
[8] | Chu C W, Smith T F and Gardner W E 1970 Phys. Rev. B 1 214 |
[9] | Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380 |
| Shah P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S and Cheng J G 2018 Phys. Rev. B 97 020508(R) |
[10] | Demuer A, Marcenat C, Thomasson J, Calemczuk R, Salce B, Lejay P, Braithwaite D and Flouquet J 2000 J. Low Temp. Phys. 120 245 |
[11] | Wilhelm H 2003 A C-Calorimetry at High Pressure, Low Temperature in Advances in Solid State Physics ed Kramer B (Berlin: Springer) |
[12] | Butz T, Chappert J, Dufresne J F, Hartmann O, Karlsson E, Lindgren B, Norlin L O, Podini P and Yaouanc A 1980 Phys. Lett. A 75 321 |
| Khasanov R, Guguchia Z, Maisuradze A, Andreica D, Elender M, Raselli A, Shermadini Z, Goko T, Knecht F, Morenzoni E and Amato A 2016 High Press. Res. 36 140 |
[13] | Zhu J, Yang Z X, Hou X Y, Guan T, Zhang Q T, Li Y Q, Han X F, Zhang J, Li C H, Shan L, Chen G F and Ren C 2015 Appl. Phys. Lett. 106 202601 |
[14] | Naidyuk Y G and Yanson I K 2004 Point Contact Spectroscopy in Springer Series in Solid-State Science (Berlin: Springer) vol 145 |
[15] | Deutscher G 2005 Rev. Mod. Phys. 77 109 |
[16] | Ali N, Gibson Q, Klimczuk T and Cava R J 2014 Phys. Rev. B 89 020505(R) |
[17] | Sankar R, Narsinga Rao G, Panneer Muthuselvam I, Chang T R et al. 2017 J. Phys.: Condens. Matter 29 095601 |
[18] | Kaluarachchi U, Deng Y, Besser F, Sun K, Zhou L et al. 2017 Phys. Rev. B 95 224508 |
[19] | Xu C Q, Sankar R, Zhou W, Li B, Han Z D, Qian B, Dai J H, Cui H, Bangura A F, Chou F C and Xu X 2017 Phys. Rev. B 96 064528 |
[20] | Blonder G E and Tinkham M 1983 Phys. Rev. B 27 112 |
[21] | Naidyuk G, Kvitnitskaya O E, Gamayunova N V, Bashlakov D L, Tyutrina L V, Fuchs G, Huhne R, Chareev D A and Vasiliev A N 2017 Phys. Rev. B 96 094517 |
[22] | Mondal M, Joshi B, Kumar S, Kamlapure A, Ganguli S C, Thamizhavel A, Mandal S, Ramakrishnan S and Raychaudhuri P 2012 Phys. Rev. B 86 094520 |
[23] | de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657 |
[24] | Mikrajuddin A, Shi G, Kim H K and Okuyama K 1999 Mater. Sci. Semicond. Process. 2 321 |
[25] | Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515 |
[26] | Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451 |
| Kashiwaya S, Tanaka Y, Koyanagi M and Kajimura K 1996 Phys. Rev. B 53 2667 |
[27] | Daghero D and Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001 |
[28] | Wilson M N, Hallas A M, Cai Y, Guo S, Gong Z, Sankar R, Chou F C, Uemura Y J and Luke G M 2017 Phys. Rev. B 95 224506 |
[29] | Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S and Chuang T M 2016 Sci. Adv. 2 e1600894 |
[30] | Pang G M, Smidman M, Zhao L X, Wang Y F, Weng Z F, Che L Q, Chen Y, Lu X, Chen G F and Yuan H Q 2016 Phys. Rev. B 93 060506(R) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|