Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087201    DOI: 10.1088/0256-307X/37/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current
Chao Yang1, Zheng-Chuan Wang1*, and Gang Su1,2*
1School of Physical Sciences, University of Chinese Academy of Sciences, Beijng 100049, China
2Kavli Institute for Theoretical Physics, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Chao Yang, Zheng-Chuan Wang, and Gang Su 2020 Chin. Phys. Lett. 37 087201
Download: PDF(775KB)   PDF(mobile)(770KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the magnetization reversal of single-molecular magnets by a spin-polarized current in the framework of the spinor Boltzmann equation. Because of the spin–orbit coupling, the spin-polarized current will impose a non-zero spin transfer torque on the single-molecular magnets, which will induce the magnetization switching of the latter. Via the $s$–$d$ exchange interaction between the conducting electrons and single-molecular magnets, we can investigate the magnetization dynamics of single-molecular magnets. We demonstrate the dynamics of the magnetization based on the spin diffusion equation and the Heisenberg-like equation. The results show that when the current is large enough, the magnetization of the single-molecular magnets can be reversed. We also calculate the critical current density required for the magnetization reversal under different anisotropy and external magnetic fields, which is helpful for the corresponding experimental design.
Received: 13 May 2020      Published: 28 July 2020
PACS:  72.25.-b (Spin polarized transport)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.78.-n (Magnetization dynamics)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFA0305804), the National Natural Science Foundation of China (Grant No. 11834014), and the Strategetic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Yang
Zheng-Chuan Wang
and Gang Su
[1] Christou G, Gatteschi D, Hendrickson D N and Sessoli R 2000 MRS Bull. 25 66
[2] Misiorny M and Barnaś J 2008 Phys. Rev. B 77 172414
[3] Vuillaume D 2019 ChemPlusChem 84 1215
[4] Bogani L and Wernsdorfer W 2009 Molecular Spintronics Using Single-Molecule Magnets in Nanoscience and Technology (Singapore: World Scientific) p 194
[5] Elste F and Timm C 2005 Phys. Rev. B 71 155403
[6] Heersche H B, de Groot Z, Folk J A, van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801
[7] Rizzini A L, Krull C, Balashov T, Kavich J J, Mugarza A, Miedema P S, Thakur P K, Sessi V, Klyatskaya S, Ruben M, Stepanow S and Gambardella P 2011 Phys. Rev. Lett. 107 177205
[8] Kahle S, Deng Z, Malinowski N, Tonnoir C, Forment-Aliaga A, Thontasen N, Rinke G, Le D, Turkowski V, Rahman T S, Rauschenbach S, Ternes M and Kern K 2011 Nano Lett. 12 518
[9] Delgado F, Palacios J J and Fernández-Rossier J 2010 Phys. Rev. Lett. 104 026601
[10] Shpiro A, Levy P M and Zhang S 2003 Phys. Rev. B 67 104430
[11] Misiorny M and Barnaś J 2007 Phys. Rev. B 76 054448
[12] Barraza-Lopez S, Park K, García-Suárez V and Ferrer J 2009 Phys. Rev. Lett. 102 246801
[13] Friedman J R and Sarachik M P 2010 Annu. Rev. Condens. Matter Phys. 1 109
[14] Timm C 2007 Phys. Rev. B 76 014421
[15] Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A and Mathur N D 2007 Nature 445 410
[16] Jonchhe S and Mao H 2019 Single-Molecule Mechanochemical Sensing Using DNA Origami Nanostructures in Biomimetic Sensing ed Fitzgerald J and Fenniri H (New York: Springer) p 171
[17] Zhang X, Wang Z C, Zheng Q R, Zhu Z G and Su G 2015 Phys. Lett. A 379 848
[18] Zhang J, Levy P M, Zhang S and Antropov V 2004 Phys. Rev. Lett. 93 256602
[19] Sheng L, Xing D Y, Wang Z D and Dong J 1997 Phys. Rev. B 55 5908
[20] Sheng L, Teng H Y and Xing D Y 1998 Phys. Rev. B 58 6428
[21] Wang Z C 2012 Eur. Phys. J. B 85 303
[22] Wang Z C 2018 Physica A 492 395
[23] Yang C, Wang Z C, Zheng Q R and Su G 2019 Eur. Phys. J. B 92 136
[24] Amin V P, Zemen J and Stiles M D 2018 Phys. Rev. Lett. 121 136805
[25] Manchon A and Zhang S 2008 Phys. Rev. B 78 212405
[26] Manchon A and Zhang S 2009 Phys. Rev. B 79 094422
[27] Baek S H, Borsa F, Furukawa Y, Hatanaka Y, Kawakami S, Kumagai K, Suh B J and Cornia A 2005 Phys. Rev. B 71 214436
[28] Barra A L, Bencini F, Caneschi A, Gatteschi D, Paulsen C, Sangregorio C, Sessoli R and Sorace L 2001 ChemPhysChem 2 523
Related articles from Frontiers Journals
[1] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 087201
[2] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 087201
[3] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 087201
[4] Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 087201
[5] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 087201
[6] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 087201
[7] ZHANG Xiao-Wei, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo. Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases [J]. Chin. Phys. Lett., 2013, 30(1): 087201
[8] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 087201
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(10): 087201
[10] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 087201
[11] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 087201
[12] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 087201
[13] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 087201
[14] TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, JING Yu-Lan. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers[J]. Chin. Phys. Lett., 2008, 25(10): 087201
[15] LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. Chin. Phys. Lett., 2008, 25(10): 087201
Viewed
Full text


Abstract