Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087102    DOI: 10.1088/0256-307X/37/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$
Pengdong Wang1, Yihao Wang2, Bo Zhang1, Yuliang Li1, Sheng Wang1, Yunbo Wu1, Hongen Zhu1, Yi Liu1, Guobin Zhang1, Dayong Liu3*, Yimin Xiong2*, and Zhe Sun1,4,5*
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
3Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
4Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
5CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
Cite this article:   
Pengdong Wang, Yihao Wang, Bo Zhang et al  2020 Chin. Phys. Lett. 37 087102
Download: PDF(1217KB)   PDF(mobile)(1203KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using angle-resolved photoemission spectroscopy, we study electronic structures of a Kagome metal YCr$_{6}$Ge$_{6}$. Band dispersions along $k_{z}$ direction are significant, suggesting a remarkable interlayer coupling between neighboring Kagome planes. Comparing ARPES data with first-principles calculations, we find a moderate electron correlation in this material, since band calculations must be compressed in the energy scale to reach an excellent agreement between experimental data and theoretical calculations. Moreover, as indicated by band calculations, there is a flat band in the vicinity of the Fermi level at the $\varGamma$–$M$–$K$ plane in the momentum space, which could be responsible for the unusual transport behavior in YCr$_{6}$Ge$_{6}$.
Received: 08 May 2020      Published: 28 July 2020
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
  41.60.Ap (Synchrotron radiation)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2017YFA0402901, 2016YFA0401004 and 2016YFA0300404), the National Natural Science Foundation of China (Grant Nos. 11674296, 11974354 and U1432138), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB01), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018CXFX002), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP007), and the High Magnetic Field Laboratory of Anhui Province.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pengdong Wang
Yihao Wang
Bo Zhang
Yuliang Li
Sheng Wang
Yunbo Wu
Hongen Zhu
Yi Liu
Guobin Zhang
Dayong Liu
Yimin Xiong
and Zhe Sun
[1] Stewart S G R 1984 Rev. Mod. Phys. 56 755
[2] Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
[3] Feng Y et al. 2014 Chin. Phys. Lett. 31 127303
[4] Udagawa M and Motome Y 2010 Phys. Rev. Lett. 104 106409
[5] Wang B et al. 2013 Chin. Phys. B 22 010501
[6] Han K et al. 2014 Chin. Phys. B 23 117702
[7] Wang C L et al. 2017 Chin. Phys. Lett. 34 097305
[8] Lu J L et al. 2017 Chin. Phys. Lett. 34 057302
[9] Song L et al. 2019 Chin. Phys. B 28 037101
[10] Dai J et al. 2015 Chin. Phys. Lett. 32 127503
[11] Pollmann F, Fulde P and Shtengel K 2008 Phys. Rev. Lett. 100 136404
[12] Ross K A, Ruff J P C, Adams C P et al. 2009 Phys. Rev. Lett. 103 227202
[13] Tang E and Fu L 2014 Nat. Phys. 10 964
[14] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[15] Liu Z, Li Y and Yang Y 2019 Chin. Phys. B 28 077103
[16] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[17] Yi, Hangmo and Fertig H A 1998 Phys. Rev. B 58 4019
[18] Liu W et al. 2018 Chin. Phys. Lett. 35 117501
[19] Han T H et al. 2012 Nature 492 406
[20] Gong S S, Zhu W and Sheng D N 2015 Sci. Rep. 4 6317
[21] Zhou M et al. 2014 Phys. Rev. Lett. 113 236802
[22] Maruyama M, Cuong N T and Okada S 2016 Carbon 109 755
[23] Zhu W, Gong S S and Sheng D N 2016 Phys. Rev. B 94 035129
[24] Lin Z et al. 2018 Phys. Rev. Lett. 121 096401
[25] Fenner L A, Dee A A and Wills A S 2009 J. Phys.: Condens. Matter 21 452202
[26] Yan W et al. 2018 Solid State Commun. 281 57
[27] Ohmori H et al. 1987 J. Magn. Magn. Mater. 70 249
[28] Kuroda K et al. 2017 Nat. Mater. 16 1090
[29] Nayak A K et al. 2016 Sci. Adv. 2 e1501870
[30] Yang H et al. 2017 New J. Phys. 19 015008
[31] Liu E et al. 2018 Nat. Phys. 14 1125
[32] Yang H et al. 2020 Phys. Rev. Mater. 4 024202
[33] Ye L et al. 2018 Nature 555 638
[34] Yang T Y et al. arXiv:1906.07140 [cond-mat.mtrl-sci]
[35] Avila M A 2005 J. Phys.: Condens. Matter 17 6969
[36]Blaha P et al. 2001 WIEN2K, An augmented plane wave plus local orbitals program for calculating crystal properties
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Brabers J H V J, Buschow K H J and de Boer F R 1994 J. Alloys Compd. 205 77
[39] Ishii Y et al. 2013 J. Phys. Soc. Jpn. 82 023705
[40] Liu C et al. 2009 Phys. Rev. Lett. 102 167004
[41] Avigo I et al. 2017 Phys. Status Solidi 254 1600382
[42] Bolens A, Nagaosa N 2019 Phys. Rev. B 99 165141
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 087102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 087102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 087102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 087102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 087102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 087102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 087102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 087102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 087102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 087102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 087102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 087102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 087102
Viewed
Full text


Abstract