Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076203    DOI: 10.1088/0256-307X/37/7/076203
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform
Jingyan Song, Shuai Duan, Xin Chen*, Xiangjun Li , Bingchao Yang , and Xiaobing Liu*
Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
Cite this article:   
Jingyan Song, Shuai Duan, Xin Chen et al  2020 Chin. Phys. Lett. 37 076203
Download: PDF(5842KB)   PDF(mobile)(6458KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Layered black phosphorus (BP) has recently emerged as a promising semiconductor because of its tunable band gap, high carrier mobility and strongly in-plane anisotropic properties. One-dimensional (1D) BP materials are attractive for applications in electronic and thermal devices, owing to their tailored charge and phonon transports along certain orientations. However, the fabrication of 1D BP materials still remains elusive thus far. We herein report the successful synthesis and characterization of nanotube-like BP for the first time by a selective composite with hexagonal boron nitride (h-BN) nanotubes under high pressure and high temperature conditions. The produced 1D BP/h-BN composites possess flexible diameter, length and thickness by adjusting the experimental synthesis parameters. Interestingly, it is important to notice that the stability of our BP sample has been significantly improved under the formation of heterostructures, which can actively promote their commercial applications. Our experimental work, together with first-principles calculations, presents a new scalable strategy of designing 1D tube-like BP/h-BN heterostructures that are promising candidates for flexible and high efficiency electronic platform.
Received: 18 May 2020      Published: 21 June 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11804184, 11974208, and 21905159) and the Shandong Provincial Science Foundation (Grant Nos. ZR2019MA054, 2019KJJ020, and ZR2019BA010).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076203       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingyan Song
Shuai Duan
Xin Chen
Xiangjun Li 
Bingchao Yang 
and Xiaobing Liu
[1] Castellanos-Gomez A, Vicarelli L, Prada E, Island J Q, Narasimha-Acharya K L and Blanter S I et al. 2014 2D Mater. 1 025001
[2] Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L et al. 2018 Adv. Energy Mater. 8 1702093
[3] Wild S, Fickert M, Mitrovic A, Lloret V, Neiss C, VidaloMoya J A et al. 2019 Angew. Chem. Int. Edit. 58 5763
[4] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[5] Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400
[6] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H et al. 2015 Nat. Nanotechnol. 10 517
[7] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[8] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H et al. 2014 Nat. Nanotechnol. 9 372
[9] Yang B, Wan B, Zhou Q, Wang Y, Hu W, Lv W et al. 2016 Adv. Mater. 28 9408
[10] Hao C, Yang B, Wen F, Xiang J, Li L, Wang W et al. 2016 Adv. Mater. 28 3194
[11]Duan S, Cui Y, Chen X, Yi W and Liu X 2019 Adv. Funct. Mater. 29 1904346
[12] Chen X, Duan S, Yi W, Singh D J, Guo J and Liu X 2020 Small (in press)
[13] Mayorga-Martinez C C, Sofer Z and Pumera M 2015 Angew. Chem. Int. Edit. 54 14317
[14] Deng Y, Luo Z, Conrad N J, Liu H and Ye P D 2014 ACS Nano 8 8292
[15] Subas M, Padmini P, Gayathri D, Rohit B, Thripuranthaka M, Kothari D C et al. 2018 Angew. Chem. Int. Edit. 130 7808
[16] Kuntz K L, Wells R A, Hu J, Yang T, Dong B, Guo H et al. 2017 ACS Appl. Mater. & Interfaces 9 9126
[17] Zhu X, Zhang T, Jiang D, Duan H, Sun Z, Zhang M et al. 2018 Nat. Commun. 9 4177
[18] Ryder C R, Wood J D, Wells S A, Jariwala D, Marks T J et al. 2016 Nat. Chem. 8 597
[19] Zhang T, Wan Y, Xie H, Mu Y, Du P, Wang D et al. 2018 J. Am. Chem. Soc. 140 7561
[20] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S et al. 2015 Nat. Commun. 6 8572
[21] Zhang J, Liu H J, Cheng L, Wei J, Liang J L, Fan D D et al. 2016 J. Mater. Chem. C 4 991
[22] Avsar A, Tan J Y, Luo X, Khoo K H, Yeo Y, Watanabe K et al. 2017 Nano Lett. 17 5361
[23] Constantinescu G C and Hine N D 2016 Nano Lett. 16 2586
[24] Doganov R A, Koenig S P, Yeo Y, Watanabe K, Taniguchi T and Zyilmaz B 2015 Appl. Phys. Lett. 106 083505
[25] Li D, Wang X, Zhang Q, Zou L, Xu X, Zhang Z 2016 Adv. Funct. Mater. 25 7360
[26] Viti L, Hu J, Coquillat D, Politano A, Consejo C, Knap W et al. 2016 Adv. Mater. 28 7390
[27] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y et al. 2010 Nat. Mater. 9 430
[28] Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y et al. 2018 Nano Lett. 18 3172
[29] Sinh S, Takabayashi Y, Shinohara H and Kitaura R 2016 2D Mater. 3 035010
[30] Kresse G and Furthmüller J 1996 J. Comput. Mater. Sci. 6 15
[31] Kresse G and Hafner J 1996 Phys. Rev. B 54 11169
[32] Blöchl P E B 1994 Phys. Rev. B 50 17953
[33] Payne M C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[36] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[37] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[38]Chelikowsky J R and Louie S G 1996 Quantum Theory of Real Materials (Berlin: Springer Science & Business Media) vol 348 p 219
[39] Antonatos N, Bouša D, Shcheka S, Beladi-Mousavi S M, Pumera M and Sofer Z 2019 Inorg. Chem. 58 10227
[40] Liu Y, Gao P, Zhan T, Zhu X, Zhang M, Chen M et al. 2019 Angew. Chem. Int. Edit. 58 1479
[41] Liu X, Chen X, David S, Richard S, Wu J, Petitgirard S et al. 2019 Proc. Natl. Acad. Sci. USA 116 7703
[42] Liu Z, Guo X, Li R, Li H, Chen X et al. 2019 J. Materiomics 5 649
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 076203
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 076203
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 076203
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 076203
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 076203
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 076203
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 076203
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 076203
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 076203
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 076203
[11] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 076203
[12] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 076203
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 076203
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 076203
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 076203
Viewed
Full text


Abstract