CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform |
Jingyan Song†, Shuai Duan†, Xin Chen*, Xiangjun Li , Bingchao Yang , and Xiaobing Liu* |
Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China |
|
Cite this article: |
Jingyan Song, Shuai Duan, Xin Chen et al 2020 Chin. Phys. Lett. 37 076203 |
|
|
Abstract Layered black phosphorus (BP) has recently emerged as a promising semiconductor because of its tunable band gap, high carrier mobility and strongly in-plane anisotropic properties. One-dimensional (1D) BP materials are attractive for applications in electronic and thermal devices, owing to their tailored charge and phonon transports along certain orientations. However, the fabrication of 1D BP materials still remains elusive thus far. We herein report the successful synthesis and characterization of nanotube-like BP for the first time by a selective composite with hexagonal boron nitride (h-BN) nanotubes under high pressure and high temperature conditions. The produced 1D BP/h-BN composites possess flexible diameter, length and thickness by adjusting the experimental synthesis parameters. Interestingly, it is important to notice that the stability of our BP sample has been significantly improved under the formation of heterostructures, which can actively promote their commercial applications. Our experimental work, together with first-principles calculations, presents a new scalable strategy of designing 1D tube-like BP/h-BN heterostructures that are promising candidates for flexible and high efficiency electronic platform.
|
|
Received: 18 May 2020
Published: 21 June 2020
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11804184, 11974208, and 21905159) and the Shandong Provincial Science Foundation (Grant Nos. ZR2019MA054, 2019KJJ020, and ZR2019BA010). |
|
|
[1] | Castellanos-Gomez A, Vicarelli L, Prada E, Island J Q, Narasimha-Acharya K L and Blanter S I et al. 2014 2D Mater. 1 025001 |
[2] | Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L et al. 2018 Adv. Energy Mater. 8 1702093 |
[3] | Wild S, Fickert M, Mitrovic A, Lloret V, Neiss C, VidaloMoya J A et al. 2019 Angew. Chem. Int. Edit. 58 5763 |
[4] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 |
[5] | Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400 |
[6] | Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H et al. 2015 Nat. Nanotechnol. 10 517 |
[7] | Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 |
[8] | Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H et al. 2014 Nat. Nanotechnol. 9 372 |
[9] | Yang B, Wan B, Zhou Q, Wang Y, Hu W, Lv W et al. 2016 Adv. Mater. 28 9408 |
[10] | Hao C, Yang B, Wen F, Xiang J, Li L, Wang W et al. 2016 Adv. Mater. 28 3194 |
[11] | Duan S, Cui Y, Chen X, Yi W and Liu X 2019 Adv. Funct. Mater. 29 1904346 |
[12] | Chen X, Duan S, Yi W, Singh D J, Guo J and Liu X 2020 Small (in press) |
[13] | Mayorga-Martinez C C, Sofer Z and Pumera M 2015 Angew. Chem. Int. Edit. 54 14317 |
[14] | Deng Y, Luo Z, Conrad N J, Liu H and Ye P D 2014 ACS Nano 8 8292 |
[15] | Subas M, Padmini P, Gayathri D, Rohit B, Thripuranthaka M, Kothari D C et al. 2018 Angew. Chem. Int. Edit. 130 7808 |
[16] | Kuntz K L, Wells R A, Hu J, Yang T, Dong B, Guo H et al. 2017 ACS Appl. Mater. & Interfaces 9 9126 |
[17] | Zhu X, Zhang T, Jiang D, Duan H, Sun Z, Zhang M et al. 2018 Nat. Commun. 9 4177 |
[18] | Ryder C R, Wood J D, Wells S A, Jariwala D, Marks T J et al. 2016 Nat. Chem. 8 597 |
[19] | Zhang T, Wan Y, Xie H, Mu Y, Du P, Wang D et al. 2018 J. Am. Chem. Soc. 140 7561 |
[20] | Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S et al. 2015 Nat. Commun. 6 8572 |
[21] | Zhang J, Liu H J, Cheng L, Wei J, Liang J L, Fan D D et al. 2016 J. Mater. Chem. C 4 991 |
[22] | Avsar A, Tan J Y, Luo X, Khoo K H, Yeo Y, Watanabe K et al. 2017 Nano Lett. 17 5361 |
[23] | Constantinescu G C and Hine N D 2016 Nano Lett. 16 2586 |
[24] | Doganov R A, Koenig S P, Yeo Y, Watanabe K, Taniguchi T and Zyilmaz B 2015 Appl. Phys. Lett. 106 083505 |
[25] | Li D, Wang X, Zhang Q, Zou L, Xu X, Zhang Z 2016 Adv. Funct. Mater. 25 7360 |
[26] | Viti L, Hu J, Coquillat D, Politano A, Consejo C, Knap W et al. 2016 Adv. Mater. 28 7390 |
[27] | Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y et al. 2010 Nat. Mater. 9 430 |
[28] | Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y et al. 2018 Nano Lett. 18 3172 |
[29] | Sinh S, Takabayashi Y, Shinohara H and Kitaura R 2016 2D Mater. 3 035010 |
[30] | Kresse G and Furthmüller J 1996 J. Comput. Mater. Sci. 6 15 |
[31] | Kresse G and Hafner J 1996 Phys. Rev. B 54 11169 |
[32] | Blöchl P E B 1994 Phys. Rev. B 50 17953 |
[33] | Payne M C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 |
[34] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[35] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[36] | Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 |
[37] | Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 |
[38] | Chelikowsky J R and Louie S G 1996 Quantum Theory of Real Materials (Berlin: Springer Science & Business Media) vol 348 p 219 |
[39] | Antonatos N, Bouša D, Shcheka S, Beladi-Mousavi S M, Pumera M and Sofer Z 2019 Inorg. Chem. 58 10227 |
[40] | Liu Y, Gao P, Zhan T, Zhu X, Zhang M, Chen M et al. 2019 Angew. Chem. Int. Edit. 58 1479 |
[41] | Liu X, Chen X, David S, Richard S, Wu J, Petitgirard S et al. 2019 Proc. Natl. Acad. Sci. USA 116 7703 |
[42] | Liu Z, Guo X, Li R, Li H, Chen X et al. 2019 J. Materiomics 5 649 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|