Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 074201    DOI: 10.1088/0256-307X/37/7/074201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Direct Spatially Resolved Snapshot Interferometric Phase and Stokes Vector Extraction by Using an Imaging PolarCam
Dahi Ibrahim1,2 and Daesuk Kim1*
1Division of Mechanical System Engineering, Chonbuk National University, Jeonju 54896, Korea
2Engineering and Surface Metrology Lab, National Institute of Standards, Tersa St., El haram, El Giza, Egypt
Cite this article:   
Dahi Ibrahim and Daesuk Kim 2020 Chin. Phys. Lett. 37 074201
Download: PDF(977KB)   PDF(mobile)(973KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extract the 3D phase $\varDelta$ and the Stokes parameter $S_{3}$ of a transmissive anisotropic object spatially using an interferometric PolarCam. Four parallel interferograms with a phase shift of $\pi$/2 between the images are captured in a single snapshot and then reconstructed by the four-bucket algorithm to extract the 3D phase of the object. The $S_{3}$ is then calculated directly from the obtained 3D phase $\varDelta$. The extracted results of $\varDelta$ and $S_{3}$ were compared with those extracted from the non-interferometric PolarCam and the Thorlabs polarimeter, and the results match quite well. The merit of using the interferometric PolarCam is that no mechanical movement mechanisms are included, and hence the $\varDelta$ and $S_{3}$ of the object can be extracted, with high accuracy and within a part of a second (three times faster than non-interferometric PolarCam and Thorlabs polarimeter methods). Moreover, this method can be applied in the field of the dynamic spectro–interferometric PolarCam and can be implemented using swept-wavelength approaches.
Received: 21 April 2020      Published: 21 June 2020
PACS:  42.30.Rx (Phase retrieval)  
  42.30.Va (Image forming and processing)  
  07.60.Ly (Interferometers)  
  42.30.Kq (Fourier optics)  
Fund: Supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Grant No. SRFC-TA1703-11.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/074201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/074201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dahi Ibrahim and Daesuk Kim
[1] Dembele V, Jin M, Baek B J and Kim D 2016 Opt. Express 24 14419
[2] Jellison G E 1996 Thin Solid Films 290–291 40
[3] Watkins L R 2008 Appl. Opt. 47 2998
[4] Kim D, Seo Y, Jin M, Yoon Y, Chegal W, Cho Y J, Cho H M, Abdelsalam D G and Magnusson R 2014 Opt. Express 22 17430
[5] Kim D, Seo Y, Yoon Y, Dembele V, Yoon J, Lee K and Magnusson R 2016 Opt. Lett. 41 2318
[6] Ibrahim D G A 2019 Curr. Appl. Phys. 19 822
[7] Millerd J E, Brock N J, Hayes J B, North-Morris M B, Novak M and Wyant J C 2004 Proc. SPIE 5531 304
[8] Millerd J, Brock N, Hayes J, Kimbrough B, Novak M, North-Morris M and Wyant J C 2005 Proc. SPIE 5856 14
[9] Tyo J S, Goldstein D L, Chenault D B and Shaw J A 2006 Appl. Opt. 45 5453
[10] Abdelsalam D G and Kim D 2011 Appl. Opt. 50 6153
[11]Azzam R M A and Bashara N M 1976 Ellipsometry and Polarized Light (Amsterdam: North-Holland)
[12] Novak N, Millerd J, Brock N, North-Morris M, Hayes J and Wyant J 2005 Appl. Opt. 44 6861
[13] Toto-Arellano N I 2017 J. Mod. Opt. 64 S20
[14] Kimbrough B T 2006 Appl. Opt. 45 4554
[15] Abdelsalam D G, Yao B, Gao P, Min J and Guo R 2012 Appl. Opt. 51 4891
[16] Brock N, Hayes J, Kimbrough B, Millerd J, North-Morris M, Novak M and Wyant J 2005 Proc. SPIE 5875 58750F
[17] Chenault D B and Chipman R A 1993 Appl. Opt. 32 4223
[18] Abdelsalam D G and Yasui T 2018 Appl. Phys. Lett. 112 171101
[19] Abdelsalam D G and Yasui T 2018 Opt. Lett. 43 1758
[20] Abdelsalam D G and Kim D 2011 Opt. Express 19 17951
[21] Abdelsalam D G, Shaalan M S and Eloker M M 2010 Opt. Lasers Eng. 48 543
[22] Abdelsalam D G, Magnusson R and Kim D 2011 Appl. Opt. 50 3360
[23] Bioucas-Dias J M and Valadão G 2007 IEEE Trans. Image Process. 16 698
[24] Tian C and Liu S 2016 Opt. Express 24 18695
Related articles from Frontiers Journals
[1] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 074201
[2] Dong-Lin Wang, Yun-Qi Hao, Feng-Xiao Zhai, Kun Yang, Hong-Qiong Liu, Qiao Chen, Huikai Xie. Endoscopic Optical Doppler Tomography Based on Two-Axis Scanning MEMS Mirror[J]. Chin. Phys. Lett., 2018, 35(12): 074201
[3] Yu-Dong Yao, Zhi Qiao, Xiao-Chao Wang, Wei Fan, Zun-Qi Lin. Temporally Modulated Phase Retrieval Method for Weak Temporal Phase Measurement of Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(3): 074201
[4] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 074201
[5] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 074201
[6] XIE Zong-Liang, MA Hao-Tong, QI Bo, REN Ge, TAN Yu-Feng, HE Bi, ZENG Heng-Liang, JIANG Chuan. Aperture-Scanning Fourier Ptychographic Encoding with Phase Modulation[J]. Chin. Phys. Lett., 2015, 32(12): 074201
[7] JIANG Shu-Na, LI Xing, MA Li, GAO Ya-Ru, GUI Wei-Ling, CHENG Chuan-Fu. Heptad Phase Vortex Array in Extremely Deep Fresnel Diffraction Region Generated by Asymmetrical Metal Subwavelength Holes Film[J]. Chin. Phys. Lett., 2015, 32(10): 074201
[8] DENG Yong-Kai, LI Min, YU Ji-Zhou, LIU Yuan-Xing, LIU Yun-Quan, GONG Qi-Huang. Measuring Carrier-Envelope Phase of Few-Cycle Laser Pulses Using High-Order Above-Threshold Ionization Photoelectrons[J]. Chin. Phys. Lett., 2014, 31(06): 074201
[9] ZHAO Shun-Cai, WU Qi-Xuan, GONG Ai-Ling. Effect of Spontaneously Generated Coherence and Detuning on 2D Atom Localization in Two Orthogonal Standing-Wave Fields[J]. Chin. Phys. Lett., 2014, 31(03): 074201
[10] LI Jie, WANG Yu-Rong, MENG Xiang-Feng, YANG Xiu-Lun, WANG Qing-Pu. Phase-Shift Extraction and Wavefront Reconstruction in Generalized Phase-Shifting Interferometry with a Standard Phase Object[J]. Chin. Phys. Lett., 2013, 30(9): 074201
[11] SHI Yi-Shi , WANG Ya-Li, LI Tuo, GAO Qian-Kun, WAN Hao, ZHANG San-Guo, WU Zhi-Bo . Ptychographical Imaging Algorithm with a Single Random Phase Encoding[J]. Chin. Phys. Lett., 2013, 30(7): 074201
[12] SHI Yi-Shi, WANG Ya-Li, ZHANG San-Guo. Generalized Ptychography with Diverse Probes[J]. Chin. Phys. Lett., 2013, 30(5): 074201
[13] WANG Bao-Sheng, PAN Xing-Chen, WANG Hai-Yan, CHENG Jun, GAO Shu-Mei, LIU Cheng, ZHU Jian-Qiang . Super-Resolved Digital Holography Based on the Coherent Diffraction Imaging Scheme[J]. Chin. Phys. Lett., 2013, 30(5): 074201
[14] PAN Xing-Chen, LIN Qiang, LIU Cheng, and ZHU Jian-Qiang. A Lens Assisted Phase Microscope Based on Ptychography[J]. Chin. Phys. Lett., 2012, 29(8): 074201
[15] XU Xian-Feng, CAI Lü-Zhong, LU Guang-Can, HAN Guo-Xia, TIAN Yan-Jie, ZHANG Qian, and JIAO Zhi-Yong. Advanced Aperture Synthesis by Wave-Front Combination in Generalized Phase-Shifting Interferometry[J]. Chin. Phys. Lett., 2012, 29(8): 074201
Viewed
Full text


Abstract