Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 057501    DOI: 10.1088/0256-307X/37/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Origin of Anisotropy in Gadolinium Crystal Using a New Spin Hamiltonian
Dan Wei1,2**, Zhibin Chen3, Hui Yang3, Yongjun Cao3, Chuan Liu4,5
1College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022
2School of Materials Science and Engineering, Tsinghua University, Beijing 100084
3College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022
4School of Physics and Center for High Energy Physics, Peking University, Beijing 100871
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Dan Wei, Zhibin Chen, Hui Yang et al  2020 Chin. Phys. Lett. 37 057501
Download: PDF(520KB)   PDF(mobile)(518KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single crystal rare-earth magnets, such as hexagonal-close-packed gadolinium, usually have a large second order anisotropy $K_2$ and a negative first order anisotropy $K_1$ at low temperatures, which are difficult to explain using microscopic theories. An atomic scale effective spin Hamiltonian ${\mathcal F}[\{{\boldsymbol S}_i\}]$ is proposed, which, apart from the usual isotropic nearest neighbor coupling $J$, consists of two new terms that are different for in-plane and out-of-plane neighbors and which are characterized by two new couplings $C_1$ and $C_2$, respectively. The hybrid Monte–Carlo method is utilized to sample this system to the desired Boltzmann-like distribution $\exp(-{\mathcal F}/k_{_{\rm B}}T)$. It is found that $K_2$ and $K_1$ are compatible with the experimental values and arise naturally from the exchange anisotropy $C_1$ and $C_2$, which are less than 0.01$\%$ in magnitude of the isotropic exchange energy $J$. This new model spin Hamiltonian can also be applied to study other magnetic properties.
Received: 15 December 2019      Published: 25 April 2020
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.10.Hk (Classical spin models)  
  87.10.Rt (Monte Carlo simulations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 51771099 and 11621131001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/057501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/057501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dan Wei
Zhibin Chen
Hui Yang
Yongjun Cao
Chuan Liu
[1]Graham Jr. C D 1963 J. Appl. Phys. 34 1341
[2]Drust K D and Kronmüller H 1986 J. Magn. Magn. Mater. 59 86
[3]Brück E 2005 J. Phys. D 38 R381
[4]Gschneidner K A and Pecharsky V K 2008 Int. J. Refrig. 31 945
[5]Van Velck J H 1937 Phys. Rev. 52 1178
[6]Abdelouahed S and Alouai A 2009 Phys. Rev. B 79 054406
[7]Néel L 1954 J. Phys. Radium 15 376
[8]Wei D, Song J and Liu C 2016 IEEE Trans. Magn. 52 7100808
[9]Duane S, Kennedy A D, Pendleton B J and Roweth D 1987 Phys. Lett. B 195 216
[10]Elliott J F, Legvold S and Spedding F H 1953 Phys. Rev. 91 28
[11]Nigh H E, Legvold S and Spedding F H 1963 Phys. Rev. 132 1092
Related articles from Frontiers Journals
[1] Zhiwen Wang, Jinghua Liang, and Hongxin Yang. Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(1): 057501
[2] Yiqing Hao, Yiqing Gu, Yimeng Gu, Erxi Feng, Huibo Cao, Songxue Chi, Hua Wu, and Jun Zhao. Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$[J]. Chin. Phys. Lett., 2021, 38(9): 057501
[3] Huaixiang Wang, Jinghua Song, Weipeng Wang, Yuansha Chen, Xi Shen, Yuan Yao, Junjie Li, Jirong Sun, and Richeng Yu. Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films[J]. Chin. Phys. Lett., 2021, 38(8): 057501
[4] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 057501
[5] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 057501
[6] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 057501
[7] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 057501
[8] Kun Li, Fanggui Wang, Youfang Lai, Mingzhu Xue, Xin Li, Jinbo Yang, Changsheng Wang, Jingzhi Han, Shunquan Liu, Wenyun Yang, Yingchang Yang, Honglin Du. Magnetic and Magnetocaloric Properties of Polycrystalline and Oriented Mn$_{2-\delta}$Sn[J]. Chin. Phys. Lett., 2019, 36(9): 057501
[9] Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao. Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl[J]. Chin. Phys. Lett., 2019, 36(6): 057501
[10] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 057501
[11] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 057501
[12] Yu-Hao Bai, Xia Wang, Lin-Ping Mu, Xiao-Hong Xu. Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 057501
[13] Ran Wang, Ya-Xuan Shang, Rui Wu, Jin-Bo Yang, Yang Ji. Evolution of Magnetic Domain Structure in a YIG Thin Film[J]. Chin. Phys. Lett., 2016, 33(04): 057501
[14] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 057501
[15] WEI Wen-Gang, WANG Hui, ZHANG Kai, LIU Hao, KOU Yun-Fang, CHEN Jin-Jie, DU Kai, ZHU Yin-Yan, HOU Deng-Lu, WU Ru-Qian, YIN Li-Feng, SHEN Jian. Large Tunability of Physical Properties of Manganite Thin Films by Epitaxial Strain[J]. Chin. Phys. Lett., 2015, 32(08): 057501
Viewed
Full text


Abstract