GENERAL |
|
|
|
|
Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement |
Wei-Min Shang1, Jie Zhou1, Hui-Xian Meng2, Jing-Ling Chen1** |
1Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 2School of Mathematics and Physics, North China Electric Power University, Beijing 102206
|
|
Cite this article: |
Wei-Min Shang, Jie Zhou, Hui-Xian Meng et al 2020 Chin. Phys. Lett. 37 050302 |
|
|
Abstract We propose a scenario to increase the probability of probabilistic quantum deletion and to enhance the fidelity of approximate quantum deletion for two non-orthogonal states via weak measurement. More interestingly, by pretreating the given non-orthogonal states, the probability of probabilistic quantum deletion and fidelity of approximate quantum deletion can reach 1. Since outcomes of the weak measurement that we required are probabilistic, we perform the subsequent deleting process only when the outcome of weak measurement is "yes". Remarkably, we find that our scenario has better performance in quantum information process; for example, it costs less quantum resources and time.
|
|
Received: 03 January 2020
Published: 25 April 2020
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
|
Fund: Supported by the Nankai Zhide Foundation, the Tianjin Research Innovation Project for Postgraduate Students (Grant No. 2019YJSB033), and the National Natural Science Foundation of China (Grant Nos. 11901317 and 11875167). |
|
|
[1] | Dirac P A M 1930 The Principle of Quantum Mechanics (Cambridge: Cambridge University Press) | [2] | Oszmaniec M, Grudka A, Horodecki M and Wójcik A 2016 Phys. Rev. Lett. 116 110403 | [3] | Barnum H, Caves C M, Fuchs C A, Jozsa R and Schumacher B 1996 Phys. Rev. Lett. 76 2818 | [4] | Pati A K 2002 Phys. Rev. A 66 062319 | [5] | Doosti M, Kianvash F and Karimipour V 2017 Phys. Rev. A 96 052318 | [6] | Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502 | [7] | Pati A K and Braunstein S L 2000 Nature 404 164 | [8] | Wootters W K and Zurek W H 1982 Nature 299 802 | [9] | Dieks D 1982 Phys. Lett. A 92 271 | [10] | Bužek V and Hillery M 1996 Phys. Rev. A 54 1844 | [11] | Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L and Mu L Z 2014 Phys. Rep. 544 241 | [12] | Scarani V, Iblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225 | [13] | Landauer R 1961 IBM J. Res. Dev. 5 183 | [14] | Szilard L 1929 Z. Phys. 53 840 | [15] | Pati A K and Braunstein S L 2003 Phys. Lett. A 315 208 | [16] | Feng J, Gao Y F, Cao J W, Wang J S and Zhan M S 2001 Phys. Lett. A 292 12 | [17] | Hillery M and Bužek V 1997 Phys. Rev. A 56 1212 | [18] | Pati A K and Braunstein S L 2000 arXiv:quant-ph/0007121 | [19] | Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978 | [20] | Wang M H and Cai Q Y 2019 Phys. Rev. A 99 012324 | [21] | Duan L M and Guo G C 1998 Phys. Lett. A 243 261 | [22] | Adhikari S and Choudhury B S 2006 Phys. Rev. A 73 054303 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|