CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes |
He-Nan Fang1**, Yuan-Yuan Zhong1, Ming-Wen Xiao2, Xuan Zang1, Zhi-Kuo Tao1 |
1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 2Department of Physics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao et al 2020 Chin. Phys. Lett. 37 038504 |
|
|
Abstract A spintronic theory is developed to study the effect of lattice distortion on the magnetic tunnel junctions (MTJs) consisting of single-crystal barrier and half-metallic electrodes. In the theory, the lattice distortion is described by strain, defect concentration and recovery temperature. All three parameters will modify the periodic scattering potential, and further alter the tunneling magnetoresistance (TMR). The theoretical results show that: (1) the TMR oscillates with all the three parameters; (2) the strain can change the TMR about 30%; (3) the defect concentration will strongly modify the periodic scattering potential, and further change the TMR about 50%; and (4) the recovery temperature has little effect on the periodic scattering potential, and only can change the TMR about 10%. The present work may provide a theoretical foundation to the application of lattice distortion for MTJs consisting of single-crystal barrier and half-metallic electrodes.
|
|
Received: 08 October 2019
Published: 22 February 2020
|
|
PACS: |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
73.40.Gk
|
(Tunneling)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11704197 and 61574079, and the NUPTSF under Grant No. NY217046. |
|
|
[1] | Han X F, Oogane M, Kubota H et al 2000 Appl. Phys. Lett. 77 283 | [2] | Parkin S S P, Kaiser C, Panchula A et al 2004 Nat. Mater. 3 862 | [3] | Yuasa S, Nagahama T, Fukushima A et al 2004 Nat. Mater. 3 868 | [4] | Drewello V, Schmalhorst J, Thomas A et al 2008 Phys. Rev. B 77 014440 | [5] | Fuchs G D, Katine J A, Kiselev S I et al 2006 Phys. Rev. Lett. 96 186603 | [6] | Kubota H, Fukushima A, Yakushiji K et al 2008 Nat. Phys. 4 37 | [7] | Deac A M, Fukushima A, Kubota H et al 2008 Nat. Phys. 4 803 | [8] | Jia X T, Xia K and Bauer G E W 2011 Phys. Rev. Lett. 107 176603 | [9] | Fabian J, Matos-Abiaguea A, Ertlera C et al 2007 Acta Phys. Slovaca 57 565 | [10] | Han X F, Ali S S and Liang S H 2013 Sci. Chin. Phys. Mech. 56 29 | [11] | Ishikawa T, Hakamata S, Matsuda K et al 2008 J. Appl. Phys. 103 07A919 | [12] | Hu B, Moges K, Honda Y et al 2016 Phys. Rev. B 94 094428 | [13] | Liu H, Kawami T, Moges K et al 2015 J. Phys. D 48 164001 | [14] | Marukame T, Ishikawa T, Taira T et al 2010 Phys. Rev. B 81 134432 | [15] | Zhang J, Phung T, Pushp A et al 2017 Appl. Phys. Lett. 110 172403 | [16] | McFadden A, Wilson N, Brown-Heft et al 2017 J. Magn. Magn. Mater. 444 383 | [17] | McFadden A, Brown-Heft, Pennachio D et al 2017 J. Appl. Phys. 122 113902 | [18] | Inoue M, Hu B, Moges K et al 2017 Appl. Phys. Lett. 111 082403 | [19] | Fang H N, Xiao M W, Rui W B et al 2018 J. Magn. Magn. Mater. 465 333 | [20] | Fang H N, Xiao M W, Rui W B et al 2016 Sci. Rep. 6 24300 | [21] | Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier) | [22] | Fang H N, Xiao M W, Rui W B et al 2019 New J. Phys. 21 123006 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|