Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 038502    DOI: 10.1088/0256-307X/37/3/038502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs
Jia-Ming Zeng, Xiao-Lan Wang**, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang
National Engineering Technology Research Center for LEDs on Si Substrates, Nanchang University, Nanchang 330096
Cite this article:   
Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo et al  2020 Chin. Phys. Lett. 37 038502
Download: PDF(688KB)   PDF(mobile)(682KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of growth temperature of barriers on photoelectric properties of GaN-based yellow light emitting diodes (LEDs) is investigated. It is found that as the barrier temperature increases, the crystal quality of multi-quantum wells (MQWs) and the quality of well/barrier interface are improved, and the quantum well is thermally annealed, so that the indium atoms in the quantum well migrate to the equilibrium position, reducing the phase separation of the quantum well and improving the crystal quality of quantum wells (QWs). However, the external quantum efficiency (EQE) of the samples begins to decrease when raising the barrier temperature even further. One explanation may be that the higher barrier temperature destroys the local state in the quantum well and reduces the well/barrier interface quality. Therefore, a suitable barrier temperature is proposed, contributing to the improvement of the luminous efficiency of the yellow LEDs.
Received: 14 November 2019      Published: 22 February 2020
PACS:  85.60.Jb (Light-emitting devices)  
  81.05.Ea (III-V semiconductors)  
  81.07.St (Quantum wells)  
  68.35.Dv (Composition, segregation; defects and impurities)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400103), the National Natural Science Foundation of China (Grant No. 61704069), and the Major Special Science and Technology Project of Jiangxi Province (Grant No. 20182ABC28003).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/038502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/038502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Ming Zeng
Xiao-Lan Wang
Chun-Lan Mo
Chang-Da Zheng
Jian-Li Zhang
Shuan Pan
Feng-Yi Jiang
[1]Holonyak N and Bevacqua S F 1962 Appl. Phys. Lett. 1 82
[2]Narukawa Y et al 2010 J. Phys. D 43 354002
[3]Wen T, Lee S and Lee W 2001 Jpn. J. Appl. Phys. 40 5302
[4]Romano L T et al 1999 Appl. Phys. Lett. 75 3950
[5]Gao J D et al 2016 Chin. J. Lumin. 37 202
[6]Koleske D D et al 2014 J. Cryst. Growth 390 38
[7]Czernecki R et al 2015 J. Cryst. Growth 414 38
[8]Wang X et al 2019 J. Alloys Compd. 790 197
[9]Suihkonen S et al 2007 J. Cryst. Growth 300 324
[10]Zhang J L 2014 PhD Dissertation (Nanchang: Nanchang University) (in Chinese)
[11]El-Masry N A et al 1998 Appl. Phys. Lett. 72 40
[12]Qi W J 2018 PhD Dissertation (Nanchang: Nanchang University) (in Chinese)
[13]Zhang J L et al 2014 Chin. Phys. Lett. 31 037102
[14]Hao M et al 2006 Appl. Phys. Lett. 89 241907
[15]Shen Y C et al 2003 Appl. Phys. Lett. 82 2221
[16]Kumar M S et al 2009 Mater. Chem. Phys. 113 192
[17]Taylor E et al 2013 Semicond. Sci. Technol. 28 065011
[18]Cho Y H et al 2003 Appl. Phys. Lett. 83 2578
[19]Zhou K et al 2017 Proc. SPIE 10244 102441X
[20]Narukawa Y et al 1997 Appl. Phys. Lett. 70 981
[21]Jetter M et al 2002 Phys. Status Solidi A 192 91
[22]Satake A et al 1998 Phys. Rev. B 57 R2041
[23]Meyaard D S et al 2012 Appl. Phys. Lett. 100 081106
[24]Santi C D et al 2016 J. Appl. Phys. 119 094501
[25]Guo X, Schubert E F and Jahns J 2001 Appl. Phys. Lett. 78 3337
[26]Cao S et al 2019 Chin. Phys. Lett. 36 028501
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 038502
[2] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 038502
[3] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 038502
[4] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 038502
[5] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 038502
[6] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 038502
[7] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 038502
[8] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 038502
[9] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 038502
[10] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 038502
[11] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 038502
[12] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 038502
[13] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 038502
[14] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 038502
[15] RAJABI Kamran, CAO Wen-Yu, SHEN Tihan , JI Qing-Bin, HE Juan, YANG Wei, LI Lei, LI Ding, WANG Qi, HU Xiao-Dong. The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections[J]. Chin. Phys. Lett., 2015, 32(02): 038502
Viewed
Full text


Abstract