Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 110301    DOI: 10.1088/0256-307X/37/11/110301
|
A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States
Tianqi Dou
School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Tianqi Dou 2020 Chin. Phys. Lett. 37 110301
Download: PDF(1222KB)   PDF(mobile)(1217KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance. Over a 25.6 km fiber channel, we demonstrate point-to-point QKD operations with asymmetric Mach–Zehnder interferometer modules. Two interference visibilities of above 99% indicate that the proposed system has excellent stability. Consequently, the scheme not only improves the feasibility of distributing secret keys, but also enables QKD closer to more practical applications.

Keywords: 03.67.Dd      03.67.Hk      03.67.-a     
Received: 17 July 2020      Published: 08 November 2020
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/110301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tianqi Dou
Fig. 1  Schematic of the experimental setup. LD: laser diode; IM: intensity modulator; PC: polarization controller; ATT: attenuator; Cir/CIR: circulator; BS: beam splitter; PM: phase modulator; FR: Faraday rotator; DL: delay line; PBS: polarization beam splitter; SC: Sagnac configuration; EPC: electronic polarization controller; QC: quantum channel; SPD: single photon detector. The difference between the CIR and Cir is that the former makes pulses enter from port 3 and exit at port 1, while the latter cannot. In other words, for the CIR, pulses entering from one port will exit at the subsequent port in a clockwise direction.
Fig. 2  The theoretical and experimental key rates of the proposed scheme. The colored surface indicated in (b) represents the theoretical key rate changes with different transmission distances, while the black line indicates the key rate at a 25.6 km optical transmission distance. The black solid lines in (a) and (c) are the experimental key rates at a 25.6 km fiber distance over an hour; (a) represents the key rate where Alice prepares the quantum states and Bob measures the received quantum states, while (c) indicates the key rate for the reverse communication, where Bob prepares the quantum states and Alice measures them.
Fig. 3  Measured interference visibilities within an hour. The internal subgraphs are the histogram of corresponding interference visibility distribution. (a) The interference visibility of the communication with Alice preparing quantum states and Bob measuring them. (b) The interference visibility of the reverse communication.
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002. Rev. Mod. Phys., 74, 145
[2] Bennett C H and Brassard G 2020 Theor. Comput. Sci. 560 7 DOI: 10.1016/j.tcs.2014.05.025
[3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595 DOI: 10.1038/nphoton.2014.149
[4] Lütkenhaus N and Shields A J 2009 New J. Phys. 11 045005 DOI: 10.1088/1367-2630/11/4/045005
[5] Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108 DOI: 10.1063/1.5016931
[6] Gan Y H, Wang Y, Bao W S, He R S et al. 2019 Chin. Phys. Lett. 36 040301 DOI: 10.1088/0256-307X/36/4/040301
[7] Liao S K, Lin J, Ren J G, Liu W Y et al. 2017 Chin. Phys. Lett. 34 090302 DOI: 10.1088/0256-307X/34/9/090302
[8] Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 070301 DOI: 10.1088/0256-307X/36/7/070301
[9] Mao Y, Liu Q, Guo Y, Zhang H and Zhou J 2019 Chin. Phys. Lett. 36 100302 DOI: 10.1088/0256-307X/36/10/100302
[10] Hwang W Y 2003 Phys. Rev. Lett. 91 057901 DOI: 10.1103/PhysRevLett.91.057901
[11] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863 DOI: 10.1103/PhysRevA.51.1863
[12] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330 DOI: 10.1103/PhysRevLett.85.1330
[13] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 DOI: 10.1103/PhysRevLett.108.130503
[14] Wang J D, Qin X J, Jiang Y Z, Wang X J et al. 2016 Opt. Express 24 8302 DOI: 10.1364/OE.24.008302
[15] Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304 DOI: 10.1103/PhysRevA.82.012304
[16] Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203 DOI: 10.1364/OL.35.001203
[17] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 DOI: 10.1038/s41586-018-0066-6
[18] Martinez A, Fr?hlich B, Dynes J F, Sharpe A W et al. 2018 Appl. Phys. Lett. 113 031107 DOI: 10.1063/1.5036827
[19] Boaron A, Boso G, Rusca D, Vulliez C et al. 2018 Phys. Rev. Lett. 121 190502 DOI: 10.1103/PhysRevLett.121.190502
[20] Korzh B, Lim C C W, Houlmann R, Gisin N et al. 2015 Nat. Photon. 9 163 DOI: 10.1038/nphoton.2014.327
[21] Fr?hlich B, Lucamarini M, Dynes J F, Comandar L C et al. 2017 Optica 4 163 DOI: 10.1364/OPTICA.4.000163
[22] Wang S, Chen W, Yin Z Q, He D Y et al. 2018 Opt. Lett. 43 2030 DOI: 10.1364/OL.43.002030
[23] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043 DOI: 10.1038/ncomms15043
[24] Chen J P, Zhang C, Liu Y, Jiang C et al. 2020 Phys. Rev. Lett. 124 070501 DOI: 10.1103/PhysRevLett.124.070501
[25] Sibson P, Erven C, Godfrey M, Miki S et al. 2017 Nat. Commun. 8 13984 DOI: 10.1038/ncomms13984
[26] Para??so T K, De Marco I, Roger T, Marangon D G et al. 2019 npj Quantum Inf. 5 42 DOI: 10.1038/s41534-019-0158-7
[27] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 DOI: 10.1103/PhysRevLett.94.230504
[28] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 DOI: 10.1103/PhysRevA.72.012326
[29] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133 DOI: 10.1007/s00145-004-0142-y
[30] Wei Z C, Wang W L, Zhang Z, Gao M et al. 2013 Sci. Rep. 3 2453 DOI: 10.1038/srep02453
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 110301
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 110301
[5] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 110301
[6] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 110301
[7] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110301
[8] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 110301
[9] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 110301
[10] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 110301
[11] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 110301
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 110301
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 110301
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 110301
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 110301
Viewed
Full text


Abstract