Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 018101    DOI: 10.1088/0256-307X/37/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals
Yu-Wei Li, Xin Wang**, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei**
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096
Cite this article:   
Yu-Wei Li, Xin Wang, Guan-Wen Li et al  2020 Chin. Phys. Lett. 37 018101
Download: PDF(829KB)   PDF(mobile)(823KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Semiconductors grown by the solution-processed method have shown low-cost, facile fabrication process and comparable performance. However, there are many reasons why it is difficult to achieve high quality films. For example, lattice constant mismatch is one of the problems when photovoltaic devices made of organ metallic perovskites. In this work, $MA$PbBr$_{3}$ ($MA$ = CH$_{3}$NH$_{3}^{+}$) perovskites single crystals grown on the surface of $MA$PbBr$_{2.5}$Cl$_{0.5}$ perovskites single crystals via liquid epitaxial growth method is demonstrated. It is found that when the lattice constants of the two perovskite single crystals are matched, another crystal can be grown on the surface of one crystal by epitaxial growth. The whole epitaxy growth process does not require high heating temperature and long heating time. X-ray diffraction method is used to prove the lattice plane of the substrate and the epitaxial grown layer. A scanning electron microscope is used to measure the thickness of the epitaxial layer. Compared with perovskite-based photodetectors without epitaxial growth layer, perovskite-based photodetectors with epitaxial growth layer have lower dark current density and higher optical responsibility.
Received: 19 September 2019      Published: 23 December 2019
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2017YFC0111500 and 2016YFB0401600), the National Natural Science Foundation Project (Grant Nos. 61775034, 61571124, and 61674029), International Cooperation Program of Jiangsu Province (Grant No. BZ2018056), and the NSFC Research Fund for International Young Scientists (Grant No. 61750110537).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/018101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Wei Li
Xin Wang
Guan-Wen Li
Yao Wu
Yu-Zhu Pan
Yu-Bing Xu
Jing Chen
Wei Lei
[1]Wang X et al 2018 Phys. Status Solidi RRL 12 1800380
[2]Kim Y C, Kim K H, Son D, Jeong D, Seo J, Choi Y S, Han I T, Lee S Y and Park N 2017 Nature 550 87
[3]Wei W et al 2017 Nat. Photon. 11 315
[4]Berry J et al 2015 Adv. Mater. 27 5102
[5]Rong Y G, Liu L F, Mei A Y, Li X and Han H W 2015 Adv. Energy Mater. 5 1501066
[6]Dou L, Yang Y M, You J, Hong Z, Chang W, Li G and Yang Y 2014 Nat. Commun. 5 5404
[7]Kazim S, Nazeeruddin M K, Gräetzel M and Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812
[8]An T, Tu C and Gong W 2018 Acta Phys. Sin 67 198503 (in Chinese)
[9]Zhang J X, Guo H X, Pan X Y et al 2018 Chin. Phys. B 27 108501
[10]Wu C Y, Gu J H, Feng Y Y, Xue Y and Lu J X 2012 Acta Phys. Sin 61 157803 (in Chinese)
[11]Liang G X, Fan P, Luo J, Gu D and Zheng Z 2015 Prog. Photon. 23 1901
[12]Fan P, Gu D, Liang G, Luo J, Chen J, Zheng Z and Zhang D 2016 Sci. Rep. 6 29910
[13]Li X Y, Zhao L, Wei X Y, Li H and Jin K X 2018 Chin. Phys. B 27 117501
[14]Xiao S et al 2018 Chin. Phys. B 27 078801
[15]Kim H, Im S H and Park N 2014 J. Phys. Chem. C 118 5615
[16]Zhu P C et al 2016 Nano Lett. 16 871
[17]Dong R et al 2015 Adv. Mater. 27 1912
[18]Ji L, Hsu H, Lee J C, Bard A J and Yu E T 2018 Nano Lett. 18 994
[19]Chen J, Fu Y, Samad L, Dang L, Zhao Y, Shen S, Guo L and Jin S 2017 Nano Lett. 17 460
[20]Wei H, DeSantis D, Wei W, Deng Y, Guo D, Savenije T J, Cao L and Huang J 2017 Nat. Mater. 16 826
[21]Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photon. 9 679
[22]Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238
[23]Wang X, Wu Y, Li G, Wu J, Zhang X, Li Q, Wang B, Chen J and Lei W 2018 Adv. Electron. Mater. 4 1800237
[24]Jiang S G et al 2019 Mater. Lett. 236 26
[25]Xiao R, Hou Y, Fu Y, Peng X, Wang Q, Gonzalez E, Jin S and Yu D 2016 Nano Lett. 16 7710
Related articles from Frontiers Journals
[1] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 018101
[2] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 018101
[3] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 018101
[4] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 018101
[5] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 018101
[6] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 018101
[7] Jian-Kang Wang, Shang-Sheng Li, Ning Wang, Hui-Jie Liu, Tai-Chao Su, Mei-Hua Hu, Fei Han, Kun-Peng Yu, Hong-An Ma. Synthesis and Characteristics of Type Ib Diamond Doped with NiS as an Additive[J]. Chin. Phys. Lett., 2019, 36(4): 018101
[8] Wen-Rong Xie, Bin Liu, Tao Tao, Guo-Gang Zhang, Bao-Hua Zhang, Zi-Li Xie, Peng Chen, Dun-Jun Chen, Rong Zhang. A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures[J]. Chin. Phys. Lett., 2017, 34(6): 018101
[9] Shu-Ping Deng, Feng Cheng, De-Cong Li, Yu Tang, Zhong Chen, Lan-Xian Shen, Hong-Xia Liu, Pei-Zhi Yang, Shu-Kang Deng. Electrical Transport Properties of Type-VIII Sn-Based Single-Crystalline Clathrates (Eu/Ba)$_{8}$Ga$_{16}$Sn$_{30}$ Prepared by Ga Flux Method[J]. Chin. Phys. Lett., 2017, 34(4): 018101
[10] Mei-Qin Fu, Qing-Ling Bi, Yong-Jun Lü. Kinetics of Spherical Interface in Crystal Growth[J]. Chin. Phys. Lett., 2017, 34(4): 018101
[11] GUO Xiao-Fei, XU Bin, WEN Zhen-Xing, FAN Xiao-Hong, TIAN Bin. The near-Surface Region of Cubic Boron Nitride Single Crystal from the Li3N-hBN System[J]. Chin. Phys. Lett., 2014, 31(04): 018101
[12] BAO Han-Bo, QIN Lai-Shun, DING Yan-Guo, LI Zheng-Guo, SHI Hong-Sheng, SHU Kang-Ying. Growth and Scintillation Properties of La(Cl0.05Br0.95)3:Ce Crystal[J]. Chin. Phys. Lett., 2013, 30(8): 018101
[13] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 018101
[14] BAO Li-Hong, ZHANG Jiu-Xing**, ZHOU Shen-Lin, ZHANG Ning, XU Hong . Floating Zone Growth and Thermionic Emission Property of Single Crystal CeB6[J]. Chin. Phys. Lett., 2011, 28(8): 018101
[15] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 018101
Viewed
Full text


Abstract