Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 015201    DOI: 10.1088/0256-307X/37/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow
Huan Zheng1, Qian Chen1, Baoqing Meng1, Junsheng Zeng2, Baolin Tian1,2**
1Institute of Applied Physics and Computational Mathematics, Beijing 100094
2College of Engineering, Peking University, Beijing 100871
Cite this article:   
Huan Zheng, Qian Chen, Baoqing Meng et al  2020 Chin. Phys. Lett. 37 015201
Download: PDF(613KB)   PDF(mobile)(604KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss evolutions of nonlinear features in Richtmyer–Meshkov instability (RMI), which are known as spikes and bubbles. In single-phase RMI, the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient. Therefore, we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically. A universal model is proposed to describe the nonlinear finger (spike and bubble) growth velocity qualitatively in multiphase RMI. Both the effects of gas and particles have been taken into consideration in this model. Further, we derive the analytical expressions of the nonlinear growth model in limit cases (equilibrium flow and frozen flow). A novel compressible multiphase particle-in-cell (CMP-PIC) method is used to validate the applicability of this model. Numerical finger growth velocity matches well with our model. The present study reveals that particle volume fraction, particle density and Stokes number are the three key factors, which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.
Received: 28 September 2019      Published: 23 December 2019
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.57.-z (Laser inertial confinement)  
  47.20.-k (Flow instabilities)  
  52.50.Lp (Plasma production and heating by shock waves and compression)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 91852207, 11801036, 11502029, and the NSAF under Grant No. U1630247.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/015201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/015201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huan Zheng
Qian Chen
Baoqing Meng
Junsheng Zeng
Baolin Tian
[1]Zhou Y 2017 Phys. Rep. 720 1
[2]Luo X S, Zhang F, Ding J C, Si T, Yang J M, Zhai Z G and Wen C Y 2018 J. Fluid Mech. 849 231
[3]Zhang Q and Guo W X 2016 J. Fluid Mech. 786 47
[4]Zhai Z G, Zhang F, Zhou Z B, Ding J C and Wen C Y 2019 Sci. Chin.-Phys. Mech. Astron. 62 124712
[5]Li M and Ye W H 2019 Chin. Phys. Lett. 36 025201
[6]Tian B L, Zhang X T, Qi J and Wang S H 2011 Chin. Phys. Lett. 28 114701
[7]Gao F J, Zhang Y S, He Z W et al 2016 Phys. Fluids 28 114101
[8]Raman K S, Smalyuk V A, Casey D T et al 2014 Phys. Plasmas 21 072710
[9]Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
[10]Meshkov E E 1972 Fluid Dyn. 4 101
[11]Saffman P G 1962 J. Fluid Mech. 13 120
[12]Ukai S, Balakrishnan K and Menon S 2010 Phys. Fluids 22 104103
[13]Larsen M L, Shaw R A, Kostinski A B and Glienke S 2018 Phys. Rev. Lett. 121 204501
[14]Mcfarland J A, Black W J, Dahal J and Morgan B E 2016 Phys. Fluids 28 024105
[15]Parmar M, Haselbacher A and Balachandar S 2012 J. Fluid Mech. 699 352
[16]Vorobieff P, Anderson M, Conroy J, White R, Truman C and Kumar S 2011 Phys. Rev. Lett. 106 184503
[17]Lee C B, Peng H W, Yuan H J, Wu J Z, Zhou M D and Hussain F 2011 J. Fluid Mech. 677 39
[18]Zhong H J, Lee C B, Su Z, Chen S Y, Zhou M D and Wu J Z 2013 J. Fluid Mech. 716 228
[19]Xu T, Lien F S, Ji H and Zhang F 2013 Shock Waves 23 619
[20]Boiko V M, Kiselev V P, Kiselev S P, Papyrin N A, Poplavsky S V and Fomin V M 1997 Shock Waves 7 275
[21]Kandan K, Khaderi S N, Wadley H and Deshpande V S 2017 J. Mech. Phys. Solids 109 217
[22]Zhang F, Frost D L, Thibault P A and Murray S B 2001 Shock Waves 10 431
[23]Saito T 2002 J. Comput. Phys. 176 129
[24]Saito T, Marumoto M and Takayama K 2003 Shock Waves 13 299
[25]Saurel R, Chinnayya A and Carmouze Q 2017 Phys. Fluids 29 063301
[26]Zhou Y 2017 Phys. Rep. 723 1
[27]Meng B Q, Zeng J S, Tian B L, Li L, He Z W and Guo X H 2019 Phys. Fluids 31 074102
[28]Nishihara K, Wouchuk J G, Matsuoka C, Ishizaki and Zhakhovsky V V 2010 Philos. Trans. R. Soc. A 368 1769
[29]Balakrishnan K and Menon S 2011 Laser Part. Beams 29 201
[30]Mikaelian K O 1998 Phys. Rev. Lett. 80 508
[31]Mikaelian K O 2008 Phys. Rev. E 78 015303
[32]Layzer D 1955 Astrophys. J. 122 1
[33]Goncharov V N 2002 Phys. Rev. Lett. 88 134502
[34]Zhang Q 1998 Phys. Rev. Lett. 81 3391
[35]Snider D M, ORourke P J and Andrews M J 1998 Int. J. Multiphase Flow 24 1359
[36]Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. Lett. 34 045201
[37]Yang X, Xiao D L, Ding N, Liu J 2017 Chin. Phys. B 26 075202
[38]Mikaelian K O 1990 Phys. Rev. A 42 7211
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 015201
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 015201
[3] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 015201
[4] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 015201
[5] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 015201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 015201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 015201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 015201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 015201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 015201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 015201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 015201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 015201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 015201
Viewed
Full text


Abstract