Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 014701    DOI: 10.1088/0256-307X/37/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Instability in Two-Sided Thermocapillary-Buoyancy Convection with Interfacial Phase Change
Guo-Feng Xu1,2, Qiu-Sheng Liu1,2**, Jun Qin1,2, Zhi-Qiang Zhu1
1Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Guo-Feng Xu, Qiu-Sheng Liu, Jun Qin et al  2020 Chin. Phys. Lett. 37 014701
Download: PDF(651KB)   PDF(mobile)(645KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new model of two-phase thermocapillary-buoyancy convection with phase change at gas-liquid interface in an enclosed cavity subjected to a horizontal temperature gradient is proposed, rather than the previous one-sided model without phase change. We study the onset of multicellular convection and two modes of convective instability, and find four different flow regimes. Their transition map is compared with the non-phase-change condition. Our numerical results show the stabilizing effect of interfacial phase change on the thermocapillary-buoyancy convection.
Received: 14 August 2019      Published: 23 December 2019
PACS:  47.55.Ca (Gas/liquid flows)  
  47.55.dm (Thermocapillary effects)  
  47.20.Hw (Morphological instability; phase changes)  
  47.55.P- (Buoyancy-driven flows; convection)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11532015 and U1738119), the China's Manned Space Program (TZ-1) and the Joint Project of CMSA-ESA Cooperation on Utilization in Space.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/014701       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo-Feng Xu
Qiu-Sheng Liu
Jun Qin
Zhi-Qiang Zhu
[1]Li Y R, Zhang L, Zhang L and Yu J J 2018 Int. J. Thermal Sci. 130 168
[2]Chen P C and Lin W K 2001 Appl. Therm. Eng. 21 1739
[3]Abe Y, Iwaski A and Tanaka K 2005 Microgravity Sci. Technol. 16 148
[4]Smith M K and Davis S H 1983 J. Fluid Mech. 132 119
[5]Riley R J and Neitzel G P 1998 J. Fluid Mech. 359 143
[6]Jiang H, Duan L and Kang Q 2017 Chin. Phys. B 26 114703
[7]Wang J, Duan L and Kang Q 2017 Chin. Phys. Lett. 34 074703
[8]Burguete J, Mukolobwiez N, Daviaud F, Garnier N and Chiffaudel A 2001 Phys. Fluids 13 2773
[9]Shevtsova V M, Nepomnyashchy A A and Legros J C 2003 Phys. Rev. E 67 066308
[10]Zhou X M and Huang H L 2012 Chin. Phys. Lett. 29 074704
[11]Li Y R, Zhang S and Zhang L 2019 Int. J. Thermal Sci. 145 105983
[12]Zhu Z Q and Liu Q S 2010 Chin. Sci. Bull. 55 233
[13]Li Y, Grigoriev R and Yoda M 2014 Phys. Fluids 26 122112
[14]Kazemi M A, Nobes D S and Elliott J A W 2017 Langmuir 33 4578
[15]Li J J, Zhang L, Zhang L, Li Y R and Quan X J 2019 Int. J. Heat Mass Transfer 140 828
[16]Liu R, Liu Q S and Hu W R 2005 Chin. Phys. Lett. 22 402
[17]Ji Y, Liu Q S and Liu R 2008 Chin. Phys. Lett. 25 608
[18]Grigoriev R O and Qin T 2018 J. Fluid Mech. 838 248
[19]Qin T, Tuković Ž and Grigoriev R O 2014 Int. J. Heat Mass Transfer 75 284
[20]Qin T, Tuković Ž and Grigoriev R O 2015 Int. J. Heat Mass Transfer 80 38
[21]Qin T and Grigoriev R O 2018 Int. J. Heat Mass Transfer 127 308
[22]Liu Q S, Chen G and Roux B 1993 Int. J. Heat Mass Transfer 36 101
Related articles from Frontiers Journals
[1] Xiang-Yu Yi, Yu-Jian Zhu, Ji-Ming Yang, Tun Wang, Ming-Yu Sun. Rear-Surface Deformation of a Water Drop in Aero-Breakup of Shear Mode[J]. Chin. Phys. Lett., 2017, 34(8): 014701
[2] Ting Chen, Yu-Ning Zhang, Xiao-Ze Du. Determination of the Minimum Wave Speed for the Modelling of Ventilated Cavitation[J]. Chin. Phys. Lett., 2016, 33(11): 014701
[3] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 014701
[4] LIANG Ru-Quan, Kawaji Masahiro. Surface Oscillation and Flow Structure of a Liquid Bridge under Small Vibration[J]. Chin. Phys. Lett., 2014, 31(04): 014701
[5] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 014701
[6] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 014701
[7] SONG Hong-Qing, YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue. Dynamic Characteristics of Gas Transport in Nanoporous Media[J]. Chin. Phys. Lett., 2013, 30(1): 014701
[8] JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model[J]. Chin. Phys. Lett., 2012, 29(7): 014701
[9] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 014701
[10] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 014701
[11] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 014701
[12] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 014701
[13] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 014701
[14] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 014701
[15] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 014701
Viewed
Full text


Abstract