Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097502    DOI: 10.1088/0256-307X/36/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic and Magnetocaloric Properties of Polycrystalline and Oriented Mn$_{2-\delta}$Sn
Kun Li1,2, Fanggui Wang1,2, Youfang Lai1,2, Mingzhu Xue1,2, Xin Li1,2, Jinbo Yang1,2,3, Changsheng Wang1,2, Jingzhi Han1,2, Shunquan Liu1,2, Wenyun Yang1,2, Yingchang Yang1,2, Honglin Du1,2**
1School of Physics, Peking University, Beijing 100871
2Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Kun Li, Fanggui Wang, Youfang Lai et al  2019 Chin. Phys. Lett. 36 097502
Download: PDF(784KB)   PDF(mobile)(778KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mn-based Heusler alloys have attracted significant research attention as half-metallic materials because of their giant magnetocrystalline anisotropy and magnetocaloric properties. We investigate the crystal structure and magnetic properties of polycrystalline, [101]-oriented, and [100]-oriented Mn$_{2-\delta}$Sn prepared separately by arc melting, the Bridgeman method, and the flux method. All of these compounds crystallize in a Ni$_{2}$In-type structure. In the Mn$_{2-\delta}$Sn lattice, Mn atoms occupy all of the 2$a$ and a fraction of the 2$d$ sites. Site disorder exists between Mn and Sn atoms in the 2$c$ sites. In addition, these compounds undergo a re-entrant spin-glass-like transition at low temperatures, which is caused by frustration and randomness within the spin system. The magnetic properties of these systems depend on the crystal directions, which means that the magnetic interactions differ significantly along different directions. Furthermore, these materials exhibit a giant magnetocaloric effect near the Curie temperature. The largest value of maximum of magnetic entropy change ($-\Delta S_{\rm M})$ occurs perpendicular to the [100] direction. Specifically, at 252 K, maximum $-\Delta S_{\rm M}$ is 2.91 and 3.64 J$\cdot$kg$^{-1}$K$^{-1}$ for a magnetic field of 5 and 7 T, respectively. The working temperature span over 80 K and the relative cooling power reaches 302 J/kg for a magnetic field of 7 T, which makes the Mn$_{2-\delta}$Sn compound a promising candidate for a magnetic refrigerator.
Received: 05 May 2019      Published: 23 August 2019
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11675006, 51731001 and 11805006, and the National Key Research and Development Program of China under Grant Nos 2017YFA0206303, 2016YFB0700901 and 2017YFA0403701.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/097502       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/097502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Li
Fanggui Wang
Youfang Lai
Mingzhu Xue
Xin Li
Jinbo Yang
Changsheng Wang
Jingzhi Han
Shunquan Liu
Wenyun Yang
Yingchang Yang
Honglin Du
[1]Groot R A D, Mueller F M, Engen P G V and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[2]Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[3]Felser C, Fecher G and Balke B 2007 Angew. Chen. Int. Ed. 46 668
[4]Fujii S, Ishida S and Asano S 2010 J. Phys. Soc. Jpn. 79 124702
[5]Yang C K, Zhao J J and Lu J P 2004 Nano Lett. 4 561
[6]Osipov V V, Petukhov A G and Smelyanskiy V N 2005 Appl. Phys. Lett. 87 202112
[7]Wang X T, Cheng Z X, Wang J L et al 2016 J. Mater. Chem. C 36 8535
[8]Luo H Z, Liu G D, Meng F B et al 2011 Physica B 406 4245
[9]Webster P J 1969 Contemp. Phys. 10 559
[10]Kubler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745
[11]Shaughnessy M, Fong C Y, Yang L H et al 2013 J. Appl. Phys. 113 043709
[12]Alijani V, Meshcheriakova O, Winterlik J et al 2013 J. Appl. Phys. 113 063904
[13]Kreiner G, Kalache A, Hausdorf S et al 2014 Z. Anorg. Allg. Chem. 640 738
[14]Fuglsby R, Kharel P, Zhang W et al 2015 J. Appl. Phys. 117 17D115
[15]Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[16]Winterlik J, Chadov S, Gupta A et al 2012 Adv. Mater. 24 6283
[17]Aprea C, Greco A, Maiorino A et al 2015 J. Phys.: Conf. Ser. 655 01206
[18]Almanza M, Kedous-Lebouc A, Yonnet J P et al 2015 Eur. Phys. J-Appl. Phys. 71 10903
[19]Silva D J, Bordalo B D, Puga J et al 2016 Appl. Therm. Eng. 99 514
[20]Franco V, Blázquez J S, Ipus J J et al 2018 Prog. Mater. Sci. 93 112
[21]Buschow K H J, van Engen P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1
[22]Vasilev E A and Gelyasin A E 1978 Phys. Status Solidi 47 K55
[23]Howotny H and Schubert K 1946 Z. Metallkd. 37 17
[24]Kaplienko A I, Leonov B N and Chekin V V 1969 Solid State Phys. 11 3030
[25]Satya M N S, Begum R J, Srinivasan B S et al 1965 Phys. Lett. 15 223
[26]Shiraishi H, Hori T, Ohkubo N et al 2010 Phys. Status Solidi 1 3660
[27]Yasukōchi K, Kanematsu K and Ohoyama T 1961 J. Phys. Soc. Jpn. 16 1123
[28]Xu J H, Xia Y H, Yang W Y et al 2013 J. Appl. Phys. 113 17E111
[29]Griffith G, Volkening F A and Claus H 1985 J. Appl. Phys. 57 3392
[30]Dho J, Kim W S and Hur N H 2002 Phys. Rev. Lett. 89 027202
[31]Hagiwara N, Matoba M, Fujii S et al 1993 Phys. Status Solidi B 176 K71
[32]Isogai Y, Kobayashi T, Yoshida T et al 1997 Phys. Status Solidi 203 213
[33]Gschneidner K A and Jr. Pecharsky V K 2000 Annu. Rev. Mater. Res. 30 387
[34]Xu J H, Yang W Y, Du Q H et al 2014 J. Phys. D 47 065003
Related articles from Frontiers Journals
[1] Zhiwen Wang, Jinghua Liang, and Hongxin Yang. Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(1): 097502
[2] Yiqing Hao, Yiqing Gu, Yimeng Gu, Erxi Feng, Huibo Cao, Songxue Chi, Hua Wu, and Jun Zhao. Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$[J]. Chin. Phys. Lett., 2021, 38(9): 097502
[3] Huaixiang Wang, Jinghua Song, Weipeng Wang, Yuansha Chen, Xi Shen, Yuan Yao, Junjie Li, Jirong Sun, and Richeng Yu. Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films[J]. Chin. Phys. Lett., 2021, 38(8): 097502
[4] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 097502
[5] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 097502
[6] Dan Wei, Zhibin Chen, Hui Yang, Yongjun Cao, Chuan Liu. Origin of Anisotropy in Gadolinium Crystal Using a New Spin Hamiltonian[J]. Chin. Phys. Lett., 2020, 37(5): 097502
[7] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 097502
[8] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 097502
[9] Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao. Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl[J]. Chin. Phys. Lett., 2019, 36(6): 097502
[10] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 097502
[11] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 097502
[12] Yu-Hao Bai, Xia Wang, Lin-Ping Mu, Xiao-Hong Xu. Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 097502
[13] Ran Wang, Ya-Xuan Shang, Rui Wu, Jin-Bo Yang, Yang Ji. Evolution of Magnetic Domain Structure in a YIG Thin Film[J]. Chin. Phys. Lett., 2016, 33(04): 097502
[14] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 097502
[15] WEI Wen-Gang, WANG Hui, ZHANG Kai, LIU Hao, KOU Yun-Fang, CHEN Jin-Jie, DU Kai, ZHU Yin-Yan, HOU Deng-Lu, WU Ru-Qian, YIN Li-Feng, SHEN Jian. Large Tunability of Physical Properties of Manganite Thin Films by Epitaxial Strain[J]. Chin. Phys. Lett., 2015, 32(08): 097502
Viewed
Full text


Abstract