Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097101    DOI: 10.1088/0256-307X/36/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$
Haijiang Liu1,2, Yuanji Xu1,2, Yigui Zhong1,2, Jianyu Guan1,2, Lingyuan Kong1,2, Junzhang Ma3, Yaobo Huang4, Qiuyun Chen5, Genfu Chen1,2, Ming Shi3, Yi-feng Yang1,2,6, Hong Ding1,2,6**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, University of Chinese Academy of Sciences, Beijing 100190
3Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
4Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908
6Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Haijiang Liu, Yuanji Xu, Yigui Zhong et al  2019 Chin. Phys. Lett. 36 097101
Download: PDF(980KB)   PDF(mobile)(965KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) to study the band structure and hybridization effect of the heavy-fermion compound Ce$_{2}$IrIn$_{8}$. We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature $T_{\rm coh}\sim 40$ K, which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization. However, the Fermi vector and the Fermi surface volume have little change around $T_{\rm coh}$, which challenges the widely believed evolution from a high-temperature small Fermi surface to a low-temperature large Fermi surface. Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.
Received: 05 July 2019      Published: 23 August 2019
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.E-  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/097101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haijiang Liu
Yuanji Xu
Yigui Zhong
Jianyu Guan
Lingyuan Kong
Junzhang Ma
Yaobo Huang
Qiuyun Chen
Genfu Chen
Ming Shi
Yi-feng Yang
Hong Ding
[1]Andres K, Graebner J E and Ott H R 1975 Phys. Rev. Lett. 35 1779
[2]Stewart G R 1984 Rev. Mod. Phys. 56 755
[3]Kratochvílová M et al 2015 Sci. Rep. 5 15904
[4]Huy N T et al 2007 Phys. Rev. Lett. 99 067006
[5]Steglich F et al 1984 Physica B+C 126 82
[6]Mito T et al 2003 Phys. Rev. Lett. 90 077004
[7]Tsujimoto M et al 2014 Phys. Rev. Lett. 113 267001
[8]Okazaki R et al 2011 Science 331 439
[9]Mydosh J A and Oppeneer P M 2014 Philos. Mag. 94 3642
[10]Xu N et al 2014 Phys. Rev. B 90 085148
[11]Morris G D et al 2004 Phys. Rev. B 69 214415
[12]Thompson J D et al 2001 J. Magn. Magn. Mater. 226 5
[13]Heffner R H et al 2006 Physica B 374 184
[14]Ohishi K et al 2009 Phys. Rev. B 80 125104
[15]Yang Y and Pines D 2008 Phys. Rev. Lett. 100 096404
[16]Sakamoto I, Shomi Y and Ohara S 2003 Physica B 329 607
[17]Chen Q Y et al 2017 Phys. Rev. B 96 045107
[18]Chen Q Y et al 2018 Phys. Rev. Lett. 120 066403
[19]Chen Q Y et al 2018 Phys. Rev. B 97 075149
[20]Im H J et al 2008 Phys. Rev. Lett. 100 176402
[21]Souma S et al 2008 Physica B 403 752
[22]Kotliar G et al 2006 Rev. Mod. Phys. 78 865
[23]Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[24]Held K et al 2008 J. Phys.: Condens. Matter 20 064202
[25]Werner P et al 2006 Phys. Rev. Lett. 97 076405
[26]Pruschke T and Grewe N 1989 Z. Phys. B 74 439
[27]Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties edited by Schwarz K (Austria: Vienna University of Technology)
[28]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29]Ito T et al 2003 J. Phys.: Condens. Matter 15 S2149
[30]Sekiyama A et al 2000 Nature 403 396
[31]Fujimori S et al 2006 Phys. Rev. B 73 224517
[32]Raj S et al 2005 Phys. Rev. B 71 224516
[33]Patil S et al 2016 Nat. Commun. 7 11029
[34]Klotz J et al 2018 Phys. Rev. B 97 165120
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 097101
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 097101
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 097101
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 097101
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 097101
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 097101
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 097101
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 097101
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 097101
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 097101
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 097101
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 097101
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 097101
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 097101
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 097101
Viewed
Full text


Abstract