Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 090302    DOI: 10.1088/0256-307X/36/9/090302
GENERAL |
Modulational Instability of Trapped Two-Component Bose–Einstein Condensates
Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue**
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
Jian-Wen Zhou, Xiao-Xun Li, Rui Gao et al  2019 Chin. Phys. Lett. 36 090302
Download: PDF(2732KB)   PDF(mobile)(2728KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The modulational instability of two-component Bose–Einstein condensates (BECs) under an external parabolic potential is discussed. Based on the trapped two-component Gross–Pitaevskill equations, a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis. It is shown that a modulational unstable time scale exists for trapped two-component BECs. The modulational properties—which are determined by the wave number, external trapping parameter, intra- and inter-species atomic interactions—are modified significantly. The analytical results are confirmed by direct numerical simulation. Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment.
Received: 30 May 2019      Published: 23 August 2019
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  33.80.Be (Level crossing and optical pumping)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11764039, 11847304, 11865014, 11475027, 11274255 and 11305132, the Natural Science Foundation of Gansu Province under Grant No 17JR5RA076, and the Scientific Research Project of Gansu Higher Education under Grant No 2016A-005.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/090302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Wen Zhou
Xiao-Xun Li
Rui Gao
Wen-Shan Qin
Hao-Hao Jiang
Tao-Tao Li
Ju-Kui Xue
[1]Bagnato V S et al 2015 Rom. Rep. Phys. 67 5
[2]Mihalache D 2014 Rom. J. Phys. 559 295
[3]Carretero-González R et al 2008 Nonlinearity 21 R139
[4]Sulem C and Sulem P L 1999 The Nonlinear Schrödinger Equation (New York: Springer)
[5]Peyrard M and Bishop A R 1989 Phys. Rev. Lett. 62 2755
[6]Agrawal G P 2013 Nonlinear Fiber Optics (San Diego: Academic)
[7]Theocharis G et al 2003 Phys. Rev. A 67 063610
[8]Salasnich L et al 2003 Phys. Rev. Lett. 91 080405
[9]Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417
[10]Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
[11]Al Khawaja U et al 2002 Phys. Rev. Lett. 89 200404
[12]Strecker K E, Partridge G B, Truscott A G et al 2002 Nature 417 150
Carr L D and Brand J 2004 Phys. Rev. Lett. 92 040401
[13]Goldstein E V and Meystre P 1997 Phys. Rev. A 55 2935
[14]Kasamatsu K and Tsubota M 2004 Phys. Rev. Lett. 93 100402
[15]Kasamatsu K and Tsubota M 2006 Phys. Rev. A 74 013617
[16]Yu M, McKinstrie C J and Agrawal G P 1993 Phys. Rev. E 48 2178
[17]Trippenbach M, Goral K, Rzazewski K et al 2000 J. Phys. B 33 4017
[18]Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
[19]Vidanovic I, Druten N J V and Haque M 2013 New J. Phys. 15 035008
[20]Pu H, Law C K, Raghavan S et al 1999 Phys. Rev. A 60 1463
[21]Robins N P, Zhang W, Ostrovskaya E A et al 2001 Phys. Rev. A 64 021601
[22]Li L, Li Z, Malomed B A et al 2005 Phys. Rev. A 72 033611
[23]Mithun T and Porsezian K 2012 Phys. Rev. A 85 013616
[24]Nguyen J H V, Luo D and Hulet R G 2017 Science 356 422
[25]Everitt P J, Sooriyabandara M A, Guasoni M et al 2017 Phys. Rev. A 96 041601(R)
[26]Wang D S, Hu X H, Hu J and Liu W M 2010 Phys. Rev. A 81 025604
[27]Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[28]Ishfaq Ahmad Bhat, Mithun T, Malomed B A et al 2015 Phys. Rev. A 92 063606
[29]Dalfovo F, Giorgini S, Pitaevskii L P et al 1999 Rev. Mod. Phys. 71 463
[30]Ruprecht P A, Holl, M J, Burnett K et al 1995 Phys. Rev. A 51 4704
[31]Kh F, Caputo J G, Kraenkel R A et al 2003 Phys. Rev. A 67 013605
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 090302
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 090302
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 090302
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 090302
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 090302
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 090302
[8] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 090302
[9] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 090302
[10] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 090302
[11] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 090302
[12] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 090302
[13] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 090302
[14] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 090302
[15] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 090302
Viewed
Full text


Abstract