Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 080304    DOI: 10.1088/0256-307X/36/8/080304
GENERAL |
Detecting Quantumness in the $n$-cycle Exclusivity Graphs
Jie Zhou, Hui-Xian Meng, Jing-Ling Chen**
Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071
Cite this article:   
Jie Zhou, Hui-Xian Meng, Jing-Ling Chen 2019 Chin. Phys. Lett. 36 080304
Download: PDF(484KB)   PDF(mobile)(482KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory. As the simplest exclusivity graph, quantum contextuality of the $n$-cycle graph has been reviewed, while only for odd $n$ the quantumness can be revealed. Motivated by this, we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the $n$-cycle graphs. As desired, these two measures can detect the quantumness of any $n$-cycle graph when $n\ge 4$.
Received: 27 May 2019      Published: 22 July 2019
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Supported by the Nankai Zhide Foundation, the National Science Foundation for Post-doctoral Scientists of China under Grant No 2018M631726, the National Natural Science Foundation of China under Grant No 11875167, and the Fundamental Research Funds for the Central Universities under Grant No 63191507.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/080304       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/080304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Zhou
Hui-Xian Meng
Jing-Ling Chen
[1]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2]Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[3]Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[4]Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[5]Larsson J Å 2002 Europhys. Lett. 58 799
[6]Kleinmann M, Budroni C, Larsson J Å, Gühne O and Cabello A 2012 Phys. Rev. Lett. 109 250402
[7]Araújo M, Quintino M T, Budroni C, Terra Cunha M and Cabello A 2013 Phys. Rev. A 88 022118
[8]Xiang Y and Hong F Y 2013 Chin. Phys. B 22 110302
[9]Chen X, Su H Y and Chen J L 2016 Chin. Phys. Lett. 33 010302
[10]Zhu F, Zhang W and Huang Y 2017 Chin. Phys. B 26 100302
[11]Cabello A, Severini S and Winter A 2014 Phys. Rev. Lett. 112 040401
[12]Klyachko A A, Can M A, Binicioğlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403
[13]Badzia̧g P, Bengtsson I, Cabello A, Granström H and Larsson J Å 2011 Found. Phys. 41 414
[14]Liang Y C, Spekkens R W and Wiseman H M 2011 Phys. Rep. 506 1
[15]Cabello A, Badzia̧g P, Terra C M and Bourennane M 2013 Phys. Rev. Lett. 111 180404
[16]Amaral B, Terra C M and Cabello A 2015 Phys. Rev. A 92 062125
[17]Heisenberg W 1927 Z. Phys. (German) 43 172
[18]Kennard E H 1927 Z. Phys. (German) 44 326
[19]Robertson H P 1929 Phys. Rev. 34 163
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 080304
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 080304
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 080304
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 080304
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 080304
[6] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 080304
[7] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 080304
[8] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 080304
[9] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 080304
[10] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 080304
[11] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 080304
[12] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 080304
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 080304
[14] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 080304
[15] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 080304
Viewed
Full text


Abstract