CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$ |
Xi Zhang1,2†, Tianchuang Luo1,2†, Xiyao Hu1, Jing Guo3, Gongchang Lin3, Yuehui Li1,4, Yanzhao Liu1,2, Xiaokang Li5,6, Jun Ge1,2, Ying Xing7, Zengwei Zhu5,6, Peng Gao1,2,4,8, Liling Sun3,9,10, Jian Wang1,2,8,11** |
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
3Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
4Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871
5School of Physics, Huazhong University of Science and Technology, Wuhan 430074
6Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074
7Department of Materials Science and Engineering, School of New Energy and Materials, China University of Petroleum, Beijing 102249
8Beijing Academy of Quantum Information Sciences, Beijing 100193
9University of Chinese Academy of Sciences, Beijing 100190
10Songshan Lake Materials Laboratory, Dongguan 523808
11CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
Xi Zhang, Tianchuang Luo, Xiyao Hu et al 2019 Chin. Phys. Lett. 36 057402 |
|
|
Abstract Transition metal dichalcogenides, featuring layered structures, have aroused enormous interest as a platform for novel physical phenomena and a wide range of potential applications. Among them, special interest has been placed upon WTe$_{2}$ and MoTe$_{2}$, which exhibit non-trivial topology both in single layer and bulk as well as pressure induced or enhanced superconductivity. We study another distorted 1T material NbTe$_{2}$ through systematic electrical transport measurements. Intrinsic superconductivity with onset transition temperature ($T_{\rm c}^{\rm onset}$) up to 0.72 K is detected where the upper critical field ($H_{\rm c}$) shows unconventional quasi-linear behavior, indicating spin-orbit coupling induced p-wave paring. Furthermore, a general model is proposed to fit the angle-dependent magnetoresistance, which reveals the Fermi surface anisotropy of NbTe$_{2}$. Finally, non-saturating linear magnetoresistance up to 50 T is observed and attributed to the quantum limit transport.
|
|
Received: 03 April 2019
Published: 09 April 2019
|
|
PACS: |
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
74.25.F-
|
(Transport properties)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2018YFA0305600 and 2017YFA0303302, the National Natural Science Foundation of China under Grant Nos 11888101, 11774008, 11704414 and 11427805, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000, and Beijing Natural Science Foundation (Z180010). |
Online First Date: 09 April 2019
|
|
[1] | Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 | [2] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 | [3] | Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 | [4] | Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 | [5] | Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Liu X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802 | [6] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 | [7] | Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 | [8] | Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 | [9] | Li Y, Gu Q, Chen C, Zhang J, Liu Q, Hu X, Liu J, Liu Y, Ling L, Tian M, Wang Y, Samarth N, Li S, Zhang T, Feng J and Wang J 2018 Proc. Natl. Acad. Sci. USA 115 9503 | [10] | Qi Y P, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfl, M, Wu S C, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pipel E, Werner P, Hillebr, R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B H and Medvedev S A 2016 Nat. Commun. 7 11038 | [11] | Brown B E 1966 Acta Crystallogr. 20 264 | [12] | Battaglia C, Cercellier H, Clerc F, Despont L, Garnier M G, Koitzsch C, Aebi P, Berger H, Forro L and Ambrosch-Draxl C 2005 Phys. Rev. B 72 195114 | [13] | Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 | [14] | Chen H X, Li Z L, Fan X, Guo L W and Chen X L 2018 Solid State Commun. 275 16 | [15] | Nagata S, Abe T, Ebisu S, Ishihara Y and Tsutsumi K 1993 J. Phys. Chem. Solids 54 895 | [16] | Vaidya R, Bhatt N, Patel S G, Jani A R, Garg A, Vijayakumar V and Godwal B K 2003 High Press. Res. 23 379 | [17] | Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A G, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804 | [18] | Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G, Wang G H and Zhang Y H 2015 Nat. Commun. 6 7805 | [19] | Zhang X, Wang J, Liu Y, Zheng W and Wang J 2017 J. Phys. Chem. Solids (accepted) | [20] | Scharnberg K and Klemm R A 1980 Phys. Rev. B 22 5233 | [21] | Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y W, Luo J W, Wang Z Q, Ling L S, Tian M L, Jia S, Feng J, Liu X J, Wei J and Wang J 2016 npj Quantum Mater. 1 16005 | [22] | Werthamer N R, Helf E and Hohenberg P C 1966 Phys. Rev. 147 295 | [23] | Xiao H, Hu T, Liu T W, Zhu Y L, Li P G, Mu G, Su J, Li K and Mao Z Q 2018 Phys. Rev. B 97 224511 | [24] | Xing Y, Shao Z B, Ge J, Wang J H, Zhu Z W, Liu J, Wang Y, Zhao Z Y, Yan J Q, Mandrus D, Yan B H, Liu X J, Pan M H and Wang J 2018 arXiv:1805.10883v3 | [25] | Morris R C, Coleman R V and Rajendra R 1972 Phys. Rev. B 5 895 | [26] | Blatter G, Geshkenbein V B and Larkin A I 1992 Phys. Rev. Lett. 68 875 | [27] | Wang Q Y, Zhang W H, Chen W W, Xing Y, Sun Y, Wang Z Q, Mei J W, Wang Z F, Wang L L, Ma X C, Liu F, Xue Q K and Wang J 2017 2D Mater. 4 034004 | [28] | Wang K F, Graf D, Lei H C, Tozer S W and Petrovic C 2011 Phys. Rev. B 84 220401 | [29] | Zhan Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X, Mandrus D, Xie X, Pan M and Wang J 2015 Phys. Rev. B 92 041104 | [30] | Tang H, Liang D, Qiu R L J and Gao X P A 2011 ACS Nano 5 7510 | [31] | Thoutam L R, Wang Y L, Xiao Z L, Das S, Luican-Mayer A, Divan R, Crabtree G W and Kwok W K 2015 Phys. Rev. Lett. 115 046602 | [32] | Shoenberg D 1984 Magnetic Oscillations in Metals (New York: Cambridge University Press) p 61 | [33] | Abrikosov A A 2000 Europhys. Lett. 49 789 | [34] | Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475 | [35] | Xu R, Husmann A, Rosenbaum T F, Saboungi M L, Enderby J E and Littlewood P B 1997 Nature 390 57 | [36] | Parish M M and Littlewood P B 2003 Nature 426 162 | [37] | Hu J S and Rosenbaum T F 2008 Nat. Mater. 7 697 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|