Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 056201    DOI: 10.1088/0256-307X/36/5/056201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations
Lei Guo, Gang Tang, Jiawang Hong**
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
Lei Guo, Gang Tang, Jiawang Hong 2019 Chin. Phys. Lett. 36 056201
Download: PDF(993KB)   PDF(mobile)(971KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanical properties of formamidinium halide perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) are systematically investigated using first-principles calculations. Our results reveal that FABX$_{3}$ perovskites possess excellent mechanical flexibility, ductility and strong anisotropy. We shows that the planar organic cation FA$^{+}$ has an important effect on the mechanical properties of FABX$_{3}$ perovskites. In addition, our results indicate that (i) the moduli (bulk modulus $B$, Young's modulus $E$, and shear modulus $G$) of FABBr$_{3}$ are larger than those of FABI$_{3}$ for the same B atom, and (ii) the moduli of FAPbX$_{3}$ are larger than those of FASnX$_{3}$ for the same halide atom. The reason for the two trends is demonstrated by carefully analyzing the bond strength between B and X atoms based on the projected crystal orbital Hamilton population method.
Received: 01 March 2019      Published: 17 April 2019
PACS:  62.20.-x (Mechanical properties of solids)  
  63.20.dk (First-principles theory)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
Fund:
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/056201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/056201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei Guo
Gang Tang
Jiawang Hong
[1]Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[2]Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M and Seok S I 2013 Nat. Photon. 7 486
[3]https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181221.pdf
[4]Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5]Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[6]Liu M Z, Johnston M B and Snaith H J 2013 Nature 501 395
[7]Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogl, S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[8]Jiang M, Deng N H, Wang L, Xie H M and Qiu Y Q 2018 Chin. Phys. B 27 67102
[9]Rolston N, Bush K A, Printz A D, Gold-Parker A, Ding Y C, Toney M F, McGehee M D and Dauskardt R H 2018 Adv. Energy Mater. 8 1802139
[10]Zhao J J, Deng Y H, Wei H T, Zheng X P, Yu Z H, Shao Y C, Shield J E and Huang J S 2017 Sci. Adv. 3 eaao5616
[11]Feng J 2014 APL Mater. 2 081801
[12]Roknuzzaman M, Ostrikov K, Wasalathilake K C, Yan C, Wang H X and Tesfamichael T 2018 Org. Electron. 59 99
[13]Ferreira A C, Letoublon A, Paofai S, Raymond S, Ecolivet C, Ruffle B, Cordier S, Katan C, Saidaminov M I, Zhumekenov A A, Bakr O M, Even J and Bourges P 2018 Phys. Rev. Lett. 121 085502
[14]Sun S J, Fang Y N, Kieslich G, White T J and Cheetham A K 2015 J. Mater. Chem. A 3 18450
[15]Sun S J, Isikgor F H, Deng Z Y, Wei F X, Kieslich G, Bristowe P D, Ouyang J Y and Cheetham A K 2017 ChemSusChem 10 3740
[16]Eperon G E, Bryant D, Troughton J, Stranks S D, Johnston M B, Watson T, Worsley D A and Snaith H J 2015 J. Phys. Chem. Lett. 6 129
[17]Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[18]Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104
[19]Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[20]Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[21]Blöchl P E 1994 Phys. Rev. B 50 17953
[22]Ahmad S, Kanaujia P K, Niu W, Baumberg J J and Vijaya Prakash G 2014 ACS Appl. Mater. Interfaces 6 10238
[23]Lee K, Murray E D, Kong L Z, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[24]Deringer V L, Tchougréeff A and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[25]Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[26]Yvon L P and Paul S 2002 Phys. Rev. B 65 104104
[27]Weller M T, Weber O J, Frost J M and Walsh A 2015 J. Phys. Chem. Lett. 6 3209
[28]Geng W, Zhang L, Zhang Y N, Lau W M and Liu L M 2014 J. Phys. Chem. C 118 19565
[29]Jong U G, Yu C J, Ri G C, McMahon A P, Harrison N M, Barnes P R F and Walsh A 2018 J. Mater. Chem. A 6 1067
[30]Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T and Docampo P 2014 J. Phys. Chem. Lett. 5 2791
[31]Mitzi D B and Liang K 1997 J. Solid State Chem. 134 376
[32]Ferrara C, Patrini M, Pisanu A, Quadrelli P, Milanese C, Tealdi C and Malavasi L 2017 J. Mater. Chem. A 5 9391
[33]Wang J F, Fu X N and Wang J T 2017 Chin. Phys. B 26 106301
[34]Ding Y C, Chen M, Gao X Y and Jiang M H 2012 Chin. Phys. B 21 067101
[35]Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[36]Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[37]Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[38]Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[39]Tang G, Yang C, Stroppa A, Fang D N and Hong J W 2017 J. Chem. Phys. 146 224702
[40]Roknuzzaman M, Ostrikov K, Wang H X, Du A J and Tesfamichael T 2017 Sci. Rep. 7 14025
[41]Allred A L 1961 J. Inorg. Nucl. Chem. 17 215
[42]Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M and de Angelis F 2014 Nano Lett. 14 3608
[43]Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M and Fujiwara H 2017 J. Appl. Phys. 121 115501
[44]Shen P F, Nie K Q, Sun X H, Liu L J and McLeod J A 2016 Physica Status Solidi (RRL)–Rapid Res. Lett. 10 677
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 056201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 056201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 056201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 056201
[5] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 056201
[6] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 056201
[7] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 056201
[8] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 056201
[9] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 056201
[10] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 056201
[11] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 056201
[12] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 056201
[13] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 056201
[14] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 056201
[15] SUN Qi-Cheng, ZHANG Guo-Hua, JIN Feng. The Stress Distribution in Polydisperse Granular Packings in Two Dimensions[J]. Chin. Phys. Lett., 2013, 30(2): 056201
Viewed
Full text


Abstract