Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 036201    DOI: 10.1088/0256-307X/36/3/036201
An Orthorhombic Phase of Superhard $o$-BC$_{4}$N
Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li**, Fa-Ming Gao**
Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004
Cite this article:   
Nian-Rui Qu, Hong-chao Wang, Qing Li et al  2019 Chin. Phys. Lett. 36 036201
Download: PDF(805KB)   PDF(mobile)(795KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A potential superhard $o$-BC$_{4}$N with $Imm2$ space group is identified by ab initio evolutionary methodology using CALYPSO code. The structural, electronic and mechanical properties of $o$-BC$_{4}$N are investigated. The elastic calculations indicate that $o$-BC$_{4}$N is mechanically stable. The phonon dispersions imply that this phase is dynamically stable under ambient conditions. The structure of $o$-BC$_{4}$N is more energetically favorable than $g$-BC$_{4}$N above the pressure of 25.1 GPa. Here $o$-BC$_{4}$N is a semiconductor with an indirect band gap of about 3.95 eV, and the structure is highly incompressible with a bulk modulus of 396.3 GPa and shear modulus of 456.0 GPa. The mechanical failure mode of $o$-BC$_{4}$N is dominated by the shear type. The calculated peak stress of 58.5 GPa in the (100)[001] shear direction sets an upper bound for its ideal strength. The Vickers hardness of $o$-BC$_{4}$N reaches 78.7 GPa, which is greater than that of $t$-BC$_{4}$N and $bc$-BC$_{4}$N proposed recently, confirming that $o$-BC$_{4}$N is a potential superhard material.
Received: 21 October 2018      Published: 24 February 2019
PACS:  62.20.-x (Mechanical properties of solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 21671168 and 21875205, the Hebei Natural Science Foundation under Grant No B2015203096, and the Qinhuangdao Science and Technology Support Program under Grant No 201703A014.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Nian-Rui Qu
Hong-chao Wang
Qing Li
Zhi-Ping Li
Fa-Ming Gao
[1]Haines J, Leger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[2]Liu A Y and Cohen M L 1989 Science 245 841
[3]Hanae N and Satoshi I 1996 J. Phys. Chem. Solids 57 41
[4]Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[5]Zhao Y, He D W, Daemen L L, Shen T D, Schwarz R B, Zhu Y, Bish D L, Huang J, Zhang J, Shen G, Qian J and Zerda T W 2002 J. Mater. Res. 17 3139
[6]Tang M, He D, Wang W, Wang H, Xu C, Li F and Guan J 2012 Scr. Mater. 66 781
[7]Luo X G, Zhou X F, Liu Z Y, He J L, Xu B, Yu D L, Wang H T and Tian Y J 2008 J. Phys. Chem. C 112 9516
[8]Zhang Y, Sun H and Chen C F 2008 Phys. Rev. B 77 094120
[9]Li F, Man Y H, Li C M, Wang J P and Chen Z Q 2015 Comput. Mater. Sci. 102 327
[10]Wang D, Shi R and Gan L H 2017 Chem. Phys. Lett. 669 80
[11]Guo W F, Wang L S, Li Z P, Xia M R and Gao F M 2015 Chin. Phys. Lett. 32 096201
[12]Gou H, Hou L, Zhang J, Sun G, Gao L and Gao F 2006 Appl. Phys. Lett. 89 141910
[13]Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[14]Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[15]Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
[16]Li Y W, Hao J, Liu H Y, Lu S Y and Tse J S 2015 Phys. Rev. Lett. 115 105502
[17]Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[18]Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[19]Blöchl P E 1994 Phys. Rev. B 50 17953
[20]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21]Ding Y C 2012 Physica B 407 2282
[22]Baroni S, de Gironcoli S, dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23]Lazzeri M and Mauri F 2003 Phys. Rev. Lett. 90 036401
[24]Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[25]Roundy D, Krenn C R, Cohen M L and Morris J W Jr 1999 Phys. Rev. Lett. 82 2713
[26]Zhang R F, Veprek S and Argon A S 2008 Phys. Rev. B 77 172103
[27]Yang J, Sun H and Chen C 2008 J. Am. Chem. Soc. 130 7200
[28]Chen X Q, Fu C L and Podloucky R 2008 Phys. Rev. B 77 064103
[29]Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[30]Gao F, Xu R and Liu K 2005 Phys. Rev. B 71 052103
[31]Gao F 2006 Phys. Rev. B 73 132104
[32]Cracknell A P, Davies B L, Miller S C and Love W F 1979 Kronecker Product Tables (New York: Plenum Press)
[33]Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. Int. Ed. English 36 1808
[34]Gutiérrez G, Menéndez-Proupin E and Singh A K 2006 J. Appl. Phys. 99 103504
[35]Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[36]Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[37]Pugh S F 1954 Philos. Mag. A 45 823
[38]Li Z, Gao F and Xu Z 2012 Phys. Rev. B 85 144115
[39]Li Z and Gao F 2012 Phys. Chem. Chem. Phys. 14 869
[40]Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[41]Chen X Q, Niu H, Franchini C, Li D Z and Li Y Y 2011 Phys. Rev. B 84 121405
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 036201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 036201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 036201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 036201
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 036201
[6] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 036201
[7] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 036201
[8] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 036201
[9] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 036201
[10] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 036201
[11] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 036201
[12] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 036201
[13] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 036201
[14] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 036201
[15] SUN Qi-Cheng, ZHANG Guo-Hua, JIN Feng. The Stress Distribution in Polydisperse Granular Packings in Two Dimensions[J]. Chin. Phys. Lett., 2013, 30(2): 036201
Full text