Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 124204    DOI: 10.1088/0256-307X/36/12/124204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Landau–Zener–Stückelberg Interference in Nonlinear Regime
Tong Wu1,2,3†, Yuxuan Zhou2,3†, Yuan Xu2,3, Song Liu2,3,4, Jian Li2,3,4**
1Department of Physics, Harbin Institute of Technology, Harbin 150001
2Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055
3Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055
4Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055
Cite this article:   
Tong Wu, Yuxuan Zhou, Yuan Xu et al  2019 Chin. Phys. Lett. 36 124204
Download: PDF(1631KB)   PDF(mobile)(1628KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Landau–Zener–Stückelberg (LZS) interference has drawn renewed attention to quantum information processing research because it is not only an effective tool for characterizing two-level quantum systems but also a powerful approach to manipulate quantum states. Superconducting quantum circuits, due to their versatile tunability and degrees of control, are ideal platforms for studying LZS interference phenomena. We use a superconducting Xmon qubit to study LZS interference by parametrically modulating the qubit transition frequency nonlinearly. For dc flux biasing of the qubit slightly far away from the optimal flux point, the qubit excited state population shows an interference pattern that is very similar to the standard LZS interference in linear regime, except that all bands shift towards lower frequencies when increasing the rf modulation amplitude. For dc flux biasing close to the optimal flux point, the negative sidebands and the positive sidebands behave differently, resulting in an asymmetric interference pattern. The experimental results are also in good agreement with our analytical and numerical simulations.
Received: 27 September 2019      Published: 25 November 2019
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.Lx (Quantum computation architectures and implementations)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11874065, the Key R&D Program of Guangdong Province under Grant No 2018B030326001, the Guangdong Innovative and Entrepreneurial Research Team Program under Grant No 2016ZT06D348, the Natural Science Foundation of Guangdong Province under Grant No 2017B030308003, the Natural Science Foundation of Hunan Province under Grant No 2018JJ1031, and the Science, Technology and Innovation Commission of Shenzhen Municipality under Grant Nos ZDSYS20170303165926217, JCYJ20170412152620376 and KYTDPT20181011104202253.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/124204       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/124204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tong Wu
Yuxuan Zhou
Yuan Xu
Song Liu
Jian Li
[1]Wendin G 2017 Rep. Prog. Phys. 80 106001
[2]Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[3]Barends B, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Clel, A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[4]Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Clel, A N and Martinis J M 2014 Nature 508 500
[5]Martinis J M and Geller M R 2014 Phys. Rev. A 90 022307
[6]McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330
[7]Li J, Silveri M P, Kumar K S, Pirkkalainen J M, Vepsäläinen A, Chien W C, Tuorila J, Sillanpää M A, Hakonen P J, Thuneberg E V and Paraoanu G S 2013 Nat. Commun. 4 1420
[8]Silveri M P, Kumar K S, Tuorila J, Li J, Vepsäläinen A, Thuneberg E V and Paraoanu G S 2015 New J. Phys. 17 043058
[9]Beaudoin F, da Silva M P, Dutton Z and Blais A 2012 Phys. Rev. A 86 022305
[10]Str, J D, Ware M, Beaudoin F, Ohki T A, Johnson B R, Blais A and Plourde B L T 2013 Phys. Rev. B 87 220505(R)
[11]Reagor M, Osborn C B, Tezak N and et al 2018 Sci. Adv. 4 eaao3603
[12]Caldwell S, Didier N, Ryan C A and et al 2018 Phys. Rev. Appl. 10 034050
[13]Wu Y, Yang L P, Gong M, Zheng Y, Deng H, Yan Z, Zhao Y, Huang K, Castellano A D, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X and Lu L 2018 npj Quantum Inf. 4 50
[14]Zhou L, Yang S, Liu Y X, Sun C P and Nori F 2009 Phys. Rev. A 80 062109
[15]Liu Y X, Yang C X, Sun H C and Wang X B 2014 New J. Phys. 16 015031
[16]Wang D W , Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382
[17]Garraway B M and Vitanov N V 1997 Phys. Rev. A 55 4418
[18]Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
Related articles from Frontiers Journals
[1] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 124204
[2] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 124204
[3] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 124204
[4] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 124204
[5] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 124204
[6] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 124204
[7] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 124204
[8] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 124204
[9] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 124204
[10] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 124204
[11] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 124204
[12] Mu-Tian Cheng, Gen-Long Ye, Wei-Wei Zong, Xiao-San Ma. Single Photon Scattering in a Pair of Waveguides Coupled by a Whispering-Gallery Resonator Interacting with a Semiconductor Quantum Dot[J]. Chin. Phys. Lett., 2016, 33(02): 124204
[13] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 124204
[14] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 124204
[15] YANG Xu-Dong, LI Chuan-Liang, CHEN Feng-Hua. Polarization Rotation via Asymmetric Optical Pumping[J]. Chin. Phys. Lett., 2014, 31(11): 124204
Viewed
Full text


Abstract