Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 120401    DOI: 10.1088/0256-307X/36/12/120401
GENERAL |
An Exponential Shape Function for Wormholes in Modified Gravity
P. H. R. S. Moraes1,2, Pradyumn Kumar Sahoo3**, Shreyas Sunil Kulkarni3, Shivaank Agarwal3
1Università degli studi di Napoli "Federico II"–Dipartimento di Fisica, Napoli I-80126, Italy
2Instituto Tecnológico de Aeronáutica (ITA)–Departamento de Física, 12228-900, São José dos Campos, São Paulo, Brasil
3Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India
Cite this article:   
P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni et al  2019 Chin. Phys. Lett. 36 120401
Download: PDF(1231KB)   PDF(mobile)(1205KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new exponential shape function in wormhole geometry within modified gravity. The energy conditions and the equation-of-state parameter are obtained. The radial and tangential null energy conditions, and also the weak energy condition are validated, which indicates the absence of exotic matter due to modified gravity allied with such a new proposal.
Received: 06 September 2019      Published: 25 November 2019
PACS:  04.20.-q (Classical general relativity)  
  04.50.Kd (Modified theories of gravity)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
Fund: Supported by the S?o Paulo Research Foundation (FAPESP) under Grant No 2018/20689-7.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/120401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/120401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
P. H. R. S. Moraes
Pradyumn Kumar Sahoo
Shreyas Sunil Kulkarni
Shivaank Agarwal
[1]Morris M S and Thorne K S 1988 Am. J. Phys. 56 395
[2]Visser M 1995 Lorentzian Wormholes: From Einstein to Hawking (New York: AIP Press)
[3]Flamm L 1916 Phys. Z. 17 448
[4]Fuller R W and Wheeler J A 1962 Phys. Rev. 128 919
[5]Morris M S et al 1988 Phys. Rev. Lett. 61 1446
[6]Nojiri S et al 2017 Phys. Rep. 692 1
[7]Clifton T et al 2012 Phys. Rep. 513 1
[8]Capozziello S and de Laurentis M 2011 Phys. Rep. 509 167
[9]Jain B et al 2013 Astrophys. J. 779 39
[10]Vikram V et al 2013 J. Cosmol. Astropart. Phys. 2013 020
[11]Cabré A et al 2012 J. Cosmol. Astropart. Phys. 2012 034
[12]Joyce A et al 2015 Phys. Rep. 568 1
[13]Cai Y F et al 2016 Rep. Prog. Phys. 79 106901
[14]Planck Collaboration 2016 Astron. Astrophys. 594 A14
[15]Amendola L et al 2007 Phys. Rev. Lett. 98 131302
[16]Amarzguioui M et al 2006 Astron. Astrophys. 454 707
[17]Rahaman F et al 2014 Eur. Phys. J. C 74 2750
[18]Nandi K K et al 2017 Phys. Rev. D 95 104011
[19]Nandi K K et al 2006 Phys. Rev. D 74 024020
[20]Bambi C 2013 Phys. Rev. D 87 107501
[21]Bambi C 2013 Phys. Rev. D 87 084039
[22]Shaikh R 2018 Phys. Rev. D 98 024044
[23]Jusufi K and Övgün A 2018 Phys. Rev. D 97 024042
[24]Konoplya R A 2018 Phys. Lett. B 784 43
[25]Kuhfittig P K F 1999 Am. J. Phys. 67 125
[26]Godani N and Samanta G C 2019 Int. J. Mod. Phys. D 28 1950039
[27]Harko T et al 2011 Phys. Rev. D 84 024020
[28]Harko T 2014 Phys. Rev. D 90 044067
[29]Harko T and Lobo F S N 2014 Galaxies 2 410
[30]Avelino P P and Azevedo R P L 2018 Phys. Rev. D 97 064018
[31]Moraes P H R S 2019 Eur. Phys. J. C 79 674
[32]Bertolami O et al 2008 Phys. Rev. D 78 064036
[33]Sahoo P K et al 2018 Eur. Phys. J. C 78 736
[34]Deb D et al 2018 Phys. Rev. D 97 084026
[35]Sahoo P K et al 2018 New Astron. 60 80
[36]Deb D et al 2018 J. Cosmol. Astropart. Phys. 2018 044
[37]Moraes P H R S et al 2018 Eur. Phys. J. C 78 192
[38]Deb D et al 2019 Mon. Not. R. Astron. Soc. 485 5652
[39]Jamil M et al 2010 Eur. Phys. J. C 67 513
[40]Mehdizadeh M R and Ziaie A H 2019 Phys. Rev. D 99 064033
[41]Elizalde E and Khurshudyan M 2019 Phys. Rev. D 99 024051
[42]Hochberg D and Visser M 1997 Phys. Rev. D 56 4745
[43]Hawking S W and Ellis G F R 1973 The Large Scale Structure of Spacetime (Cambridge: Cambridge University Press)
[44]Schoen R and Yau S T 1981 Commun. Math. Phys. 79 231
[45]Carroll S 2004 Space-time and Geometry–An Introduction to General Relativity (San Francisco: Addison Wesley)
[46]Visser M 1997 Phys. Rev. D 56 936
[47]Santos J et al 2007 Phys. Rev. D 76 083513
[48]Atazadeh K et al 2009 Int. J. Mod. Phys. D 18 1101
[49]Garcia N M et al 2011 Phys. Rev. D 83 104032
[50]Sharif M and Ikram Ayesha 2016 Eur. Phys. J. C 76 640
[51]Capozziello S et al 2014 Phys. Lett. B 730 280
[52]Capozziello S et al 2015 Phys. Rev. D 91 124019
[53]Sharif M and Zubair M 2013 J. Phys. Soc. Jpn. 82 014002
[54]Lobbo F S N 2005 Phys. Rev. D 71 084011
[55]Varela V 2015 Phys. Rev. D 92 044002
[56]Shaikh R 2015 Phys. Rev. D 92 024015
[57]Moraes P H R S and Sahoo P K 2017 Phys. Rev. D 96 044038
[58]Caldwell R R et al 2003 Phys. Rev. Lett. 91 071301
[59]Wu P and Yu H 2005 Nucl. Phys. B 727 355
[60]de Haro J 2012 J. Cosmol. Astropart. Phys. 2012 037
[61]Xing P et al 2012 Phys. Lett. B 706 482
[62]Moraes P H R S et al 2019 Int. J. Mod. Phys. D 28 1950124
[63]Sushkov S 2005 Phys. Rev. D 71 043520
[64]Bronnikov K A et al 2012 Phys. Rev. D 86 024028
[65]Lobbo F S N 2005 Phys. Rev. D 71 124022
[66]Zubair M et al 2019 Int. J. Mod. Phys. D 28 1950067
[67]Elizalde E and Khurshudyan M 2018 Phys. Rev. D 98 123525
[68]Sahoo P K et al 2018 Int. J. Mod. Phys. D 27 1950004
[69]Moraes P H R S et al 2017 J. Cosmol. Astropart. Phys. 2017 029
[70]Yousaf et al 2017 Eur. Phys. J. Plus 132 268
[71]Yousaf Z et al 2017 Mod. Phys. Lett. A 32 1750163
[72]Sharif M and Nawazish I 2019 Ann. Phys. 400 37
[73]Azizi T 2013 Int. J. Theor. Phys. 52 3486
[74]Visser M and Barcelo C 2000 Proceedings of the Third International Workshop on Particle Physics and the Early Universe, ICTP (COSMO-99) (Trieste, Italy 27 September–2 October 1999) p 98
[75]Riess A G et al 1998 Astron. J. 116 1009
[76]Riess A G et al 2004 Astrophys. J. 607 665
[77]Tonry J L et al 2003 Astron. J. 594 1
[78]Visser M 1997 Science 276 88
Related articles from Frontiers Journals
[1] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 120401
[2] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 120401
[3] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 120401
[4] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 120401
[5] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 120401
[6] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 120401
[7] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 120401
[8] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 120401
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 120401
[10] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 120401
[11] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 120401
[12] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 120401
[13] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 120401
[14] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 120401
[15] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 120401
Viewed
Full text


Abstract