Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 110201    DOI: 10.1088/0256-307X/36/11/110201
GENERAL |
Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber
Zhou-Zheng Kang1,2, Tie-Cheng Xia1**
1Department of Mathematics, Shanghai University, Shanghai 200444
2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043
Cite this article:   
Zhou-Zheng Kang, Tie-Cheng Xia 2019 Chin. Phys. Lett. 36 110201
Download: PDF(1014KB)   PDF(mobile)(1013KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work aims to study the $N$-coupled Hirota equations in an optical fiber under the zero boundary condition at infinity. By analyzing the spectral problem, a matrix Riemann–Hilbert problem on the real axis is strictly established. Then, by solving the presented matrix Riemann–Hilbert problem under the constraint of no reflection, the bright multi-soliton solutions to the $N$-coupled Hirota equations are explicitly gained.
Received: 22 July 2019      Published: 21 October 2019
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11975145, 11271008 and 61072147.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/110201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhou-Zheng Kang
Tie-Cheng Xia
[1]Xia T C, Chen D Y 2005 Chaos Solitons & Fractals 23 1405
[2]Xia T C et al 2005 Chaos Solitons & Fractals 26 889
[3]Wazwaz A M 2018 Nonlinear Dyn. 94 2655
[4]Wang X and Chen Y 2014 Commun. Theor. Phys. 61 423
[5]Huang L L and Chen Y 2016 Chin. Phys. B 25 060201
[6]Huang L L et al 2018 Chin. Phys. B 27 020201
[7]Zhao P et al 2018 Appl. Math. Lett. 85 139
[8]Xiao Y and Fan E G 2019 J. Math. Anal. Appl. 480 123248
[9]Wang Y et al 2018 Chin. Phys. Lett. 35 010201
[10]Chen M et al 2019 Commun. Theor. Phys. 71 27
[11]Wang J et al 2019 Adv. Math. Phys. 2019 1519305
[12]Ablowitz M J et al 1973 Phys. Rev. Lett. 31 125
[13]Gardner C S et al 1976 Phys. Rev. E 19 1395
[14]Wang D S et al 2010 J. Math. Phys. 51 023510
[15]Guo B L and Ling L M 2012 J. Math. Phys. 53 073506
[16]Zhang Y S et al 2017 J. Nonlinear Math. Phys. 24 210
[17]Wu J P 2019 Nonlinear Dyn. 96 789
[18]Wu J P and Geng X G 2017 Commun. Nonlinear Sci. & Numer. Simul. 53 83
[19]Wang D S and Wang X L 2018 Nonlinear Anal.: Real World Appl. 41 334
[20]Ma W X 2018 Comput. & Appl. Math. 37 6359
[21]Xu M J et al 2019 Mod. Phys. Lett. B 33 1950002
[22]Nakkeeran K 2000 Phys. Rev. E 62 1313
[23]Liu L et al 2016 Comput. & Math. Appl. 72 807
[24]Wang D S et al 2014 Appl. Math. Comput. 229 296
[25]Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110201
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110201
[3] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 110201
[4] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 110201
[5] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 110201
[6] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 110201
[7] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 110201
[8] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 110201
[9] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 110201
[10] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 110201
[11] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 110201
[12] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 110201
[13] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 110201
[14] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 110201
[15] GENG Xian-Guo, WANG Hui. A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures[J]. Chin. Phys. Lett., 2014, 31(07): 110201
Viewed
Full text


Abstract